

High Energy Wide Area Blunt Impact Session UCSD FAA Research

Supported by FAA Joint Advanced Materials and Structures (JAMS) Center of Excellence

Hyonny Kim, Professor

Department of Structural Engineering University of California San Diego

2015 FAA/Bombardier/TCCA/EASA/Industry Composite Transport Damage Tolerance and Maintenance Workshop

15-17 September 2015, Montreal, Canada

Introduction

- Motivation and Key Issues
 - impacts are ongoing and major source of aircraft damage
 - <u>high energy wide area blunt impact</u> (HEWABI) is of particular interest
 - involves large contact area, multiple elements
 - damage can exist with *little/no exterior visibility*
- Sources of Interest:
 - ground service equipment (GSE) rubber bumpers
 - railings, blunt/round corners

Recent GSE Collision Examples

Image credit: "Service vehicle hits plane's belly, flight grounded", The Sun Daily, Posted on 15 May 2014 - 05:45pm, *Last updated on 15 May 2014 - 11:37pm* Charles Ramendran. <u>http://www.thesundaily.my/news/1047024</u>

Image Credit: Aircraft Rescue and Fire Fighting (ARFF) Working Group, Sep 8, 2015. http://arffwg.org/58222/

Recent GSE Collision Examples

Image credit: "Baggage vehicle hits plane at SeaTac; no injuries" Posted 1:23 PM, February 8, 2015, by Q13 <u>FOX News Staff</u>, Updated at 01:41pm, February 8, 2015. <u>http://q13fox.com/2015/02/08/baggage-vehiclehits-plane-at-seatac-no-injuries/</u>

Image credit: "1.5 year old Airbus A330 may be a total loss after service truck hits the nose (pics) (edited)" Last edited Thu Jan 15, 2015, 02:38 PM. http://www.democraticunderground.com/10026087459

Recent GSE Collision Examples

- Youtube video published May 1, 2014 "Lorry hits plane. Truck crashes into plane" showing truck driving into side of aircraft, then vehicle backed up and driven away.
- <u>https://www.youtube.com/w</u> <u>atch?v=788mOucDELU</u>

Play Video Here

- Understand what damage forms under blunt impact conditions
 - determine key damage modes and phenomena/parameters controlling these
 - what factors affect visual detectability
 - identify and predict failure thresholds
- Develop analysis and testing methodologies, including:
 - physically-based modeling capabilities validated by tests
 - progressive damage analysis capturing initial through final failure modes
 - defining how to analytically predict if damage is visually detectable
 - surface crack (failure criteria)
 - residual dent
- Establish Non-Destructive "quick" detection method
 - find <u>major</u> damage to internal structure: severely cracked frames, damaged shear ties
 - detection performed only from exterior skin-side
 - system must be "ramp friendly"
 - relate NDE-measurements with damage location, mode, and size/severity

Approach

- identify key failure modes from large-scale tests
- focused study of failure modes via simple element tests \rightarrow modeling capability
- transfer modeling capability to predict large-scale structural behavior

Topic I: Summary of Large Scale Experiments

Large Panel Dynamic Tests

- series of large specimens (ID: Frame03, Frame04-1, Frame04-2) tested
 - internal damage to frames and shear ties
 - no skin cracking / no visibility
 - specimen with strong shear ties exhibited direct shearing of frames at shear ties

Damage Not Visible from Exterior

Frame03 and 04 Damage Progression

Damage Modes Summary

- partially-cracked frame damage away from impact site
- shear ties delamination
- cracked/crushed shear ties in all specimens
- stringer-skin disbond
- stringer heel crack

Partially-cracked frames – from specimen Frame02

Low visibility of C-frame cracks located away from impact

Topic II: Small-Scale Studies – Experiments & FE Development

Crushing and Buckling

Model Capability Development at Small Scale → Transfer to Large Scale

Bending & Bending-Torsion Failure

Surface Cracking

Stringer Element Compression

Focus: to examine externally-visible skin failures caused by bumper indentation

Skin and stringer section (76.2 mm):

Tested by compression against the bumper

18-ply skin layup [0/45/90/-45]_{2S}

 Tension cracks on top 2 plies

 Compression and shear cracks at bottom 3 plies

Stringer Element Compression Modeling

At full compression, the skin bent at the edge of the joint.

- Half model with symmetry B.C.
- Stringer element fixed at top of stringer
- Bumper model imported from previous section
- 2 layers of shell elements (SC8R) for skin and stringer
- Hashin-Rotem failure criteria
- No cohesive zone modeling, tie displacement at contacting nodes between skin and stringer

Radial Delamination – Curved Beam Opening

Focus: investigate the shear tie radial delamination due to opening moment

- X840 Z60 6K fabric carbon/epoxy
- 12 plies layup [±45/0]_{3S}
- Pure opening moment
- Radial tension stress induced delamination

Radial Delamination – Curved Beam Opening Model

- Half model with symmetry B.C.
- Rollers and rotation B.C. at the flange
- Composite layup partitioned into sublaminates and represented with continuum shell element (SC8R) layers
- Cohesive surface interactions simulate delamination
- 0.66 mm mesh size at curved corner
- Fiber failure not modeled

Ply 12	45°
Ply 11	0°
Ply 10	45°
Ply 9	0°
Ply 8	45°
Ply 7	0°
Ply 6	0°
Ply 5	45°
Ply 4	0°
Ply 3	45°
Ply 2	0°
Ply 1	45°

Radial Delamination – Curved Beam Opening Model

Shear Tie Element - Compression and Buckling

Focus: study shear tie radial delamination and crushing due to compression loading

Department of Structural Engineering

Pivot on top

Bolted at the bottom

Delamination and fiber crushing expected at point B:

- Constant shear force
- Peak interlaminar shear at B
- Linearly varying moment
- Peak interlaminar tension at B

Shear Tie Element Damage Progression -Compression and Buckling

Shear Tie Element - Compression and Buckling Model

- Fixed at aluminum plate, roller and applied displacement at flange
- Penalty contact constraint
- 1.27 mm mesh in curved corner, 3.3 mm elsewhere
- Solid (C3D8R) elements

- 12 element layers through the thickness
- Cohesive surface interaction at curved corner to simulate delamination
- Hill's 3D failure criteria for ply failure $I_F = \frac{\sigma_{11}^2}{X^2} + \frac{\sigma_{22}^2}{Y^2} + \frac{\sigma_{33}^2}{Z^2} - \frac{\sigma_{11}\sigma_{22}}{X^2} - \frac{\sigma_{22}\sigma_{33}}{Y^2} - \frac{\sigma_{11}\sigma_{33}}{Z^2} + \frac{\sigma_{12}^2}{S_{12}^2} + \frac{\sigma_{23}^2}{S_{23}^2} + \frac{\sigma_{13}^2}{S_{13}^2} = 1$

Shear Tie Element - Compression and Buckling Model

C-Frame Element Bending & Bending-Torsion

- C-frame test specimen
 - short section w/ extension arm
- fixed end boundary condition
- loaded end:
 - 2 point connection \rightarrow bending
 - 1 point \rightarrow bending + torsion

C-Frame Element Bending Test Results (A2)

Topic III: Transferability of FE Model Definitions

Frame03 Model – Key Failure events

Failure events in the model:

- a. Impacted shear tie radial delamination
- b. Impacted shear tie corner crushing
- c. Impacted shear tie fracture
- d. Adjacent shear tie and C-frame fracture

Cross-section view through C-frame

Modeling Capabilities Plan

NDE Methods for Detecting Major Damage in Internal Composite Structural Components

- pitch-catch guided ultrasonic wave (GUW) approach
- C-frame is like 1D waveguide
 - wave transmission along length affected by damage
 - broken shear tie and frame will attenuate/modify signal
- key issues:
 - find dominant frequencies associated with those waves/modes sensitive to damage
 - complex geometry, many interfaces
 - parallel wave path through skin

GUW Tests on Damaged C-Frame

Frequency sweep conducted to find dominant frequencies (80 kHz shown below).

Expect: presence of damage \rightarrow attenuation of signal.

Damaged C-frame installed in panel:

- significant attenuation (55%) through damaged path
- <u>crack in C-frame flange detectable</u> for sensors directly mounted to frame – next: test sensing through skin

28

GUW Tests Through Shear Ties

Skin

Excite on Skin at Shear Ties → Measure in Frame

- observe how waves propagate through interfaces and bolt lines
- observe capability of GUW
 method to detecting damaged
 shear ties

Shear Ties

Sensing on Frame

Excitation on Skin

Comparison

- GUW Test: Skin to Frame
 - Shear Tie 11 (Pristine)
 - Shear Ties 07 and 06 are partially cracked at the corner
 - Shear Ties 03 and 02 are fully cracked along the bolt lines

30

Exterior-Only GUW Tests (Skin-to-Skin)

- Frame 02 Panel With Damaged Shear Ties (2, 3, 6, and 7)
- Excitation and Sensing from Outer Skin Surface at Shear Ties

Panel Inside View

Exterior-Only GUW Test Setup

• GUW test from Skin to Skin (Damaged vs. Undamaged)

Exterior-Only GUW Test Results

- Excitation at Shear Tie 7
- Receive at Shear Tie 8 (1/2 Cracked) and Shear Tie 6 (Pristine)
- Significant signal strength reduction for path through damaged shear tie

Summary: Blunt Impact Damage

- Wide contact area allows high contact forces to develop without surface-visible damage
- Damage size highly dependent on contact footprint
- Damage could be located away from impact site must inspect along load path

- HEWABI Damage Prediction
 - detailed FE prediction possible
 - » focused element-level experiments enabled accurate analysis procedure development
 - due to their simplified geometries, loading conditions, and isolated failure modes
 - » models capturing correct physical phenomena can be transferred to accurately predict large-scale structure response
 - must account for early failure modes to capture subsequent history and final failure mode
 - » e.g., shear ties in large panel tests
- Damage Detection
 - guided ultrasonic wave (GUW) methods have demonstrated proof of concept (much work to do still)
 - » significant GUW attenuation through cracked frames and shear ties
 - » exterior-only measurements show sensitivity

Future Plans: Frame to Floor Structure Interaction

- Quarter-barrel panel including floor structures will be designed to reflect more actual aircraft fuselage
 - frame-to-floor joint
 - proper frame-end torsional stiffness BC
 - more substantial, continuous shear ties
- Main focus will be Frame to Floor Interaction - How damage development will be affected according to new BCs and stress concentration factor.
 - impact locations near the floor structures

Impact near floor structures