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« Motivation and Key Issues
« impacts are ongoing and major source of aircraft
damage
« high energy wide area blunt impact (HEWABI) is of
particular interest
* involves large contact area, multiple elements
« damage can exist with little/no exterior visibility
Sources of Interest:
e ground service equipment (GSE) rubber bumpers
* railings, blunt/round corners
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Image credit: “Service vehicle hits plane's belly, flight grounded”, | A : P

) mage Credit: Aircraft Rescue and Fire Fightin
The Sun Daily, Posted on 15 May 2014 - 05:45pm, Last updated (AR?:F ) Working Group S:p 8 201|5 'ghting
on 15 May 2014 - 11:37pm Charles Ramendran. http://arfiwg.orq/58222/ ' ' '

http://www.thesundaily.my/news/1047024
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Image credit: “Baggage vehicle hits plane at SeaTac; A —
no injuries” Posted 1:23 PM, February 8, 2015, by Q13 G

FOX News Staff, Updated at 01:41pm, February 8,
2015. http://g13fox.com/2015/02/08/baggage-vehicle-
hits-plane-at-seatac-no-injuries/

Image credit: “1.5 year old Airbus A330 may be a total
loss after service truck hits the nose (pics) (edited)”
Last edited Thu Jan 15, 2015, 02:38 PM.
http://www.democraticunderground.com/10026087459
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* Youtube video published
May 1, 2014 “Lorry hits
plane. Truck crashes into
plane” showing truck
driving into side of aircraft,
then vehicle backed up and
driven away.

= https://www.youtube.com/w
atch?v=788mOucDELU

Play Video
Here


https://www.youtube.com/watch?v=788mOucDELU
https://www.youtube.com/watch?v=788mOucDELU
Lorry hits plane. Truck crashes into plane-788mOucDELU_xvid.avi
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« Understand what damage forms under blunt impact conditions

« determine key damage modes and phenomena/parameters controlling these
« what factors affect visual detectability

« identify and predict failure thresholds

« Develop analysis and testing methodologies, including:
» physically-based modeling capabilities validated by tests
» progressive damage analysis capturing initial through final failure modes
« defining how to analytically predict if damage is visually detectable
« surface crack (failure criteria)
 residual dent

« Establish Non-Destructive “quick” detection method

« find major damage to internal structure: severely cracked frames, damaged
shear ties

« detection performed only from exterior skin-side
« system must be “ramp friendly”
« relate NDE-measurements with damage location, mode, and size/severity
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» identify key failure modes from large-scale tests
» focused study of failure modes via simple element tests = modeling capability
= transfer modeling capability to predict large-scale structural behavior

Simulation Experiment
quzr;?ing Improve Design of Eb'|se rve
ailure
Methodology Structures

Large-Scale

Large-Scale
g Experiments

Simulation

2

Element-Scale
Experiments

Element-Scale FE
Development

Modeling: Isolated Failure Mode Analysis
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FrameXX Series Specimens StringerXX Specimens Stringer-
Stringer and C-Frame Reinforced Skin Specimens Reinforced Skin Specimens
Frame

Skin

Shear Tie 5 \

Stringer

Stringer Shear Tie

Qnty: 4
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Large Panel Dynamic Tests

* series of large specimens (ID: Frame03,
Frame04-1, Frame04-2) tested

— internal damage to frames and shear ties CoCured

— no skin cracking / no visibility COSer‘iff;'te
— specimen with strong shear ties exhibited Stringers
direct shearing of frames at shear ties Blunt Impact - Shear Ties:
g Loading Zone —on Composite Frames - Composite
Skin Directly Onto (C-Shape) - 7075 Al Alloy .
Shear Ties Specim.: Frame04- 4

7075 Shear Ties :ﬂﬂfaa&

Damage Not
. "5 7 k Visible from
,,,,, PR - _A» LR Exterior



Frame03 and 04 Damage Progression \$UCSD
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Impacted Shear Ties Delam/Crush
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Damage Modes Summary

« partially-cracked frame —
damage away from impact site

. shear ties delamination

« cracked/crushed shear ties in
all specimens

« stringer-skin disbond
« stringer heel crack

Partially-cracked frames — from specimen Frame02

L~ R

Crack

Low visibility of C-frame cracks
located away from impact
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Radial Delammat:on " Skin-Stringer Delamination

3}

<l /\ . o
> e k_

Bending & Bending-Torsion Failure

Surface Cracking

Underside of Large Specimen Frame03 ¥
A . “— ] W s o
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Focus: to examine externally-visible skin failures caused by bumper indentation

Skin and stringer section (76.2 mm):

Tested by compression
against the bumper

18-ply skin layup

* Tension cracks
on top 2 plies

» Compression and
shear cracks at
bottom 3 plies

13



Stringer Element Compression Modeling s UCSD
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‘l’ ‘I/ ‘I,'ﬁ Y \I’ Vu‘l/ « Half model with symmetry B.C.

ﬁ> ”',}';';  Stringer element fixed at top of stringer

 Bumper model imported from previous section

« 2 layers of shell elements (SC8R) for skin and stringer

% » Hashin-Rotem failure criteria
* No cohesive zone modeling, tie displacement at
% o contacting nodes between skin and stringer
ji;b\\\\\ 25 I
= SEO1 Test L
20 H e SEQ2 Test
g — =SE01 FEA Model M
15
o
LL
@ 10
c
o
O
5
- "
. . 0
At full compression, the skin bent 0 20 40 60 80
at the edge of the joint. Actuactor Displacement (mm)
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Radial Delamlnatlon — =1UCSD
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Focus: investigate the shear tie radial delamination due to opening moment

>
25y
% ‘i,

2
/

49 mm

v

232 mm Outer radius
10.16 mm

« X840 Z60 6K fabric carbon/epoxy

« 12 plies layup [+45/0]4

» Pure opening moment

« Radial tension stress induced delamination

15



Radial Delamlnatlon — =1CSD
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 Half model with symmetry B.C.
* Rollers and rotation B.C. at the flange

« Composite layup partitioned into sublaminates and
represented with continuum shell element (SC8R) layers

» Cohesive surface interactions simulate delamination
* 0.66 mm mesh size at curved corner
* Fiber failure not modeled

0

Ply 12 45°

Ply11 0° Sublaminate &

Ply 10 45° Cohesive zone 5
Fly 9 0® Sublaminate 5

Ply8  45° Cohesive zone 4
Ply 7 0® Sublaminate 4

Ply 6 0 Cohesive zone 3
Ply5 45° Sublaminate 3

Fly 4 0 Cohesive zone 2
Ply3  45° Sublaminate 2

Ply 2 0° Cohesive zone 1
Ply1  45° Sublaminate 1
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Radial Delamination —

Curved Beam Opening Model

—CBO01
—CB 02
—CBO03
—CBO04
= == « FE Model

0.9
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© w5 o o
© ©o o o o

(Wwi/wiw-N>) UBWoN

0.8

0.7

Deflection (Radian)

Model captured the sudden
delamination formation

possibly

due to speed increase and reduced

number of cohesive layers

Failure was more widespread
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Focus: study shear tie radial delamination and crushing due to compression loading

Distributed Impact Load

b4

$ ki

l ' ‘ Damage

."'\V
P
X
A M
/
X X

Pivot on top

Bolted at the bottom

Delamination and fiber crushing
expected at point B:

» Constant shear force

* Peak interlaminar shear at B

* Linearly varying moment

» Peak interlaminar tension at B

18



Shear Tie I_Element Damgge Progression - %UCSD
Compression and Buckling
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Initial Delamination Corner Crushing/Flattening Post-Buckling Bending Failure
¥

W
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Shear Tie Element - Compression and

Buckling Model
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e —

I T

S S S S S S S SSSSSSSSSS

» Fixed at aluminum plate, roller and
applied displacement at flange

» Penalty contact constraint

 1.27 mm mesh in curved corner, 3.3
mm elsewhere

+ Solid (C3D8R) elements

Ply 12 45°

Ply 11 0° _

By 10 45° Cohesive zone 5
Py 0° _

By B g Cohesive zone 4
Ply7 0° _

Py = Cohesive zone 3
Ply5 45 _

By = Cohesive zone 2
Ply3 45 _

Bly 2 = Cohesive zone 1
Ply1 45

12 element layers through the thickness

» Cohesive surface interaction
to simulate delamination

at curved corner

« Hill’s 3D failure criteria for ply failure

2 2 2
O 022 Us3 011022

032033

2
011033 012 J23 013

Ir=—5+—+ - -

x2 vz " 72 X2 y? Z2 5152 Sy

- + =54
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Shear_Tle Element - Compression and Y| |CSD
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ST Job 100.avi

C-Frame Element
Bending & Bending-Torsion

» C-frame test specimen
« short section w/ extension arm
« fixed end boundary condition

* loaded end: Spikime
2 point connection = bending Cl&g,eupg
1 point 2 bending + torsion View’ B8

I B SN
oo 99 f \\\ C-Frame
' . Element
Specimen

Web layup:
[45,0,-45.90.45.01.
d=108.00 tw=2.50 —=|=—

Test specimen

u_l_u

E

AN

Flange layup:
[45,0,0,-45,90,45,0] ¢




C-Frame Element

Bending Test Results (A2
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0

A2 - Stain (back to back on bottom flange) vs. load

.............. ""-q.“__--. -F"'”ﬁ.
| —i Flange

....... B‘uckllng .......

bot face near fixed-end
— = =top face near fixed-end |:
== hot face at midspan

= = =top face at mid-span

1uuu 2000 3000 4000 5000
load [N}

Straightening

Buckling

Modeling ;
Work ""\
Ongoing

6000 7000

Near Fixed-End

/ Back-to-Back

Mid-Span

AR AR g
b~\.~d\.‘.‘~l('n.%

7 Strain
Gauges
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Topic Il

INIIonNs

Transferability of FE Model Def

In Progress

[

LTI PPl Td

[ TTT1

Simulation

Animation
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Frame03 Job55 Jams.avi

Frame03 Model — Key Failure events
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M

Experimental
(Combined
Frame03 & 04)

=== FE Model (12
Layer Shear Tie,
Solid Element)

0 10 20 30 40 50 60

Indentation (mm)

Failure events in the model:

oo

Impacted shear tie radial delamination
Impacted shear tie corner crushing
Impacted shear tie fracture

Adjacent shear tie and C-frame fracture

70

80 90 100

./'

|

k.
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T -[m;mm;;{

(d)

Cross-section view
through C-frame
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Modeling Capabilities Plan
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Models of\ Capture Key Failure
Generic Modes (Major Damage)
Curved Panel Establish Dam Initiation Criteri
Specimens Capabilities amage Initiatio 'eria
- Static Define Damage Progression
- Dynamic Methodologies
: : Dynamic Eff
Experimental | with Element ynamic Eltects
Validation Level Tests Externally Visibility
/ Appl udy and predict response, for:
. N [ ] 4 .
Size, Complex Internal Various Impactors & Glancing Impact
. . 2500 — =
Structure, Geom., Joints Scenarios (v 7 s
¥ % 2[][][]—_ /,/105]r_
E / D
% 1500 — /' >V,
5 ,
g é 1000 — /'/\
g g A
2 ?; 500 — e o Panel Angle
= E - 45°
‘_%- 2 1 ~ -, —_————r
r:g 0 I | I I I I I I I
9 0 0.1 02 03 0.4 05
\‘_;’n.m y \_ Time (sec)




NDE Methods for Detecting Major Damage in
Internal Composite Structural Components

 pitch-catch guided ultrasonic
wave (GUW) approach

« C-frame is like 1D waveguide
— wave transmission along length
affected by damage
— broken shear tie and frame
will attenuate/modify signal

» key issues:

— find dominant frequencies
associated with those
waves/modes sensitive to
damage

— complex geometry, many
interfaces

— parallel wave path through
skin

- Acoustic Excitation
Through Shear Tie Station 6
- Sensor Readings at Stat-
ions 7 & 8 Normal w.r.t. Frame

Baseline

Stringers

- Sensor Reading at Station Shear
5 Shows Low/No Signal Ties
Due to Fully Crushed
Shear Tie

- Sensor Reading at Station
4 Attenuated Due to Frame

So
Crack (Low/Lost if a7y
Through-Width Crack) é:hr;’:???e 0’07@,)
s,
Or
Crack in ‘4}/ //]/Or
%
6‘0/.
G
(o)
4,
2
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GUW Tests on Damaged C-Frame

Frequency sweep conducted to find dominant
( e frequencies (80 kHz shown below).

Expect. presence of damage -> attenuation of signal.

1 Damaged C-frame installed in panel:
-  significant attenuation (55%) through damaged path

/ B aton « crack in C-frame flange detectable for sensors
4 directly mounted to frame — next: test sensing

through skin
Signal Voltage F'Iot Damaged C-frame {F'anel} 80kHz

S of
3’ ] “
Partial UE; 0 |' m H(H‘{Hf AR
Crack = ‘H ( ( m ’H” i
s-2r i ]
© 4 4.2 48 5
tlme (s) x 107
Sensors located Single-Sided FFT80kHz
305 mm (12 in.) 6000 :
from Excitation. —— Damaged
Sensor S 4000¢ 1 | 7/ Undamaged
Excitation: 5- E’ 2000¢
cycle sinusoidal <
burst sent at % 5 10
various Frequency (Hz) , 44

frequencies. 28



GUW Tests Through Shear Ties s

Excite on Skin at Shear Ties =
Measure in Frame

— observe how waves propagate
through interfaces and bolt lines

— observe capability of GUW

method to detecting damaged
shear ties Shear Ties Frame

Excitation on Skin Sensing on Frame




Comparison

e GUW Test: Skin to Frame
— Shear Tie 11 (Pristine)

— Shear Ties 07 and 06 are partially ——
cracked at the corner

— Shear Ties 03 and 02 are fully
cracked along the bolt lines

T Mid Sensor —stn| 01

— st T Ster
—STO06 —_—
s Measurements  2ros 3t
—sTO2 0.14r 1 |——sT02
0.6
012 —
04r Shear Ties:
0.1 —
0.2
s s Pristine
£ g
-0.2+
0.06 Y Cracked
-04+
0.04 -
06} Fully Cracked
0.02 —
-0.8+
-11 1|.2 1{4 1{6 1{3 2I 2‘.2 2‘.4 2|.6 00 05 /“\—/‘\1 1‘_5 2 2.5 3
time (s) x 10 Frequency (Hz)

x10° 30



Exterior-Only GUW Tests (Skin-to-Skin)

 Frame 02 Panel With Damaged Shear Ties (2, 3, 6, and 7)
« Excitation and Sensing from Outer Skin Surface at Shear Ties

he_ar I_l_Jll Shear Tie 10 Shear Tie 9

‘ Tie 7

%hg?r T|eI7 # Shear jie 6

@ g e & (7 @ . Shear J’|e8

................... P Y14 ;%.
-1 °
—————e e N . 8 N 8.8 8 8 TS s - s

iiiiiiii
0 0 0 0 0 I ey L) seeaedieee 8 BN 9 9
.....

s s [ a0 91"" 1%
lllllllllllllll

(AN

Panel Inside View 31



Exterior-Only GUW Test Setup

GUW test from Skin to Skin (Damaged vs. Undamaged)

Receive EXxcitation

‘0L

+. © 5] _ e o _
ar
Shear Tie 6 =
Location =) 2 o Shear Tie 8
e Location (1/2 .
(Pristine) Ked Location (1/2
rackess Cracked)

Panel Exterior Skin View
| Panel Interior View

Shear Tie 6 Ishﬁi:rﬁ?, ghea’r Tie8 4

: Cs & 8 2 2 8% ¢
8 S el . T %
- 3 el * 2
e : :

" io= ]

e © & ¢
e g ¢ ¢ ¢t ¢

Shear Tie 7




Exterior-Only GUW Test Results

0ar
06
04

02r

a2k
a4k
nek

0.8
a

Excitation at Shear Tie 7
Receive at Shear Tie 8 (1/2 Cracked) and Shear Tie 6 (Pristine)
Significant signal strength reduction for path through damaged shear tie

Through Undamaged ST
Through Damaged ST

Amplitude

012r

011

0.08

=
fum]
&5

0.04r

0.02

Single-Sided FFT

Through Undamaged ST
Through Damaged ST

Shear Tie 8 Skin

" Location (Pristine)

Shear Tie 6 Skin

— Location (1/2 Cracked)

]

2 25 3 35 4 45 5
Frequency (Hz) w10
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= Wide contact area allows high contact forces to develop without surface-visible damage
» Damage size highly dependent on contact footprint
= Damage could be located away from impact site — must inspect along load path

Applied to Monolithic & Sandwich Si imit
A B 0SNG Ground Service Equipment \',ifyli':;' ‘
r ) W 2
e, o Non-Local
coize LM High Velocity Hail Ice - B
Damage < A
Associated >
1,000 = 3 1) < - 1 O ~~
With Max S oy =
Energy Levels x - =
~~ > Q
- > “ —
~—’ a o [
2 Low Velocity ¥ (})3
= Metal Tips = J
= 100 < A §>_I_ ____________ A -t 01 =
UCJ 2 o | Size Limited by Local Damage, ~ Icq Dia. d g)
b é s| | l )
@ S N ' !
5 5 | | %
E & | fm——d—— 5
9] J I | I E
L § (" iSTze Limited by Local Garmage,  Tip Dia., BC Depéndent | il
3 : : | Quasi-Static Speed Possible |
‘ 3 | - Energy Description Not |
| 4 : : | Applicable |
| |
| easing Contact Footprint --> Lower Visual Detectability w/out Surface Crack
0.01 0.1 1.0
Projectile-to-Structure Contact Length Scale* (m) * Magnitude
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= HEWABI Damage Prediction
« detailed FE prediction possible

» focused element-level experiments enabled accurate analysis procedure
development

— due to their simplified geometries, loading conditions, and isolated
failure modes

» models capturing correct physical phenomena can be transferred to
accurately predict large-scale structure response

« must account for early failure modes to capture subsequent history and final
failure mode

» e.d., Shear ties in large panel tests

= Damage Detection

« guided ultrasonic wave (GUW) methods have demonstrated proof of concept
(much work to do still)

» significant GUW attenuation through cracked frames and shear ties

» exterior-only measurements show sensitivity
35



Future Plans:

Frame to Floor Structure Interaction
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Top View

E
=

\ y ™ Skin

\ ) " Frame and Skin
\ Splice

I Meed for Lower Section TBD
| Based on Simulation Results

Impact near floor structures

Side View ‘ |
Mass M
I |
Passenger Floor .= lifl GSE Bumper I',
] i 1
Z I | |
) | '
_— - M --
Frame-to-Floor =
Joint Details TBD Frame “‘—v
With Industry Input T
! | yinp Shear _ 14 9 Horizontal Motion
| Ties
4
4
\ Stringers —
4

Quarter-barrel panel including
floor structures will be designed
to reflect more actual aircraft
fuselage

= frame-to-floor joint

= proper frame-end torsional
stiffness BC

=  more substantial,
continuous shear ties

Main focus will be Frame to Floor
Interaction - How damage
development will be affected
according to new BCs and stress
concentration factor.

= impact locations near the
floor structures
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