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Probabilistic Approaches

Temperature and Moisture, First Studies Towards a Probabilistic
Approach

Toward Metal Equivalent B-basis
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Design Criterion: Af least as safe as metal (i.e., Metal equivalent B-basis)
Metal equivalent B-basis: In general for metal static strength design, compression strength variability
in operation is unconditional on environments, damage, etc.
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Effect of Temperature Variability on Design Values
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Temperature and Moisture, First Studies Towards a Probabilistic
Approach

Phase I: Reliability-Based Design Temperature Knockdown
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Probabilistic Approaches - TemPEIEIIIEEN
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Probabilistic Approaches - Temperature7
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Temperature and Moisture, First Studies Towards a Probabilistic
Approach

Probabilistic Approach: Lifetime (20 Yrs) Moisture Content Simulation
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W Total Moisture Content over 20-year Service Life:
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Probabilistic Approaches - Impacts

Probability of Detection, Energy Levels and Inspection Intervals
POD Results
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Approach
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on Threat and
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Probabilistic Approaches - Loads G

Can we Determine Limit and Ultimate Load Probabilities

 Loads may be the difficult part as the probabilities have
not been calculated for all load cases at limit load levels
* How the various structural details react to the loads is
different depending on whether it’s a flap or a vertical
stabilizer for example

*Has to be handled like exceedance curves for fatigue
evaluation but taken to limit load
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Probabilistic Approaches - Loads VLD
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Risk of Tire Event

Probability distribution of damage after inspection

12 3 N
.............. - - = +—+—+++------------» Flights

Loss of tire tread NDI grace period NDI

Visual inspection
+ |fno tire mark -> NDI wing zonal area no later than grace period N -> repair
+ Tire mark w/ visible damage -= immediate NDI -= repair

B Risk = P(Loss of tire tread N Tire tread impactto PSEMN No tire
mark with internal non-visible damage N Operating load exceeds
residual strength in N flights)

B Risk allowed < 10-? (at the end of grace period)

B Assume no additional tire loss and zero damage growth (i.e.,
Insignificant material degradation) during the grace period.
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+ Barely Visible Impact Damage (Category 1): Tool Boxes, Drill Motors,
Maintenance or Service Equipment, Manufacturing Environment

 Ground Hail: Removable Primary Structure and Non-removable Primary
Structure

Wheel and Tire Threats: Tire Burst, Wheel Well Over-pressure, Thrown
Tread, Rim Release, Loose Tread, Flailing Tread, Brake Temps

In-flight Hail: All Primary Structure with Exposed Frontal Area
Lightning Strike
Bird Impact

Accidental Impacts ~ Detectable Damage (Category 2/3): VID (Visible Impact
Damage)

+ Accidental Impacts Discrete Source Damage (Category 4): Deterministically
Defined, Thru-Penetration, Obvious Damage.

 Accidental Damage: Large Scale Breaching of a Pressurized Fuselage
Compartment — Areas Subject to Threats from Rotating Machinery

 Accidental Damage: Large Scale Breaching of a Pressurized Fuselage

Compartment — Decompression Venting
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