

Application of Finite Element Analysis (FEA) in Roadside Hardware Safety

Dhafer Marzougui August 10, 2016

FEA in Roadside Hardware Safety

- Over the years, significant improvements in transportation safety have been achieved thanks to the use of Finite Element Analysis (FEA)
- Different transportation safety fields have benefited from this technology (automotive, aviation, ship design, etc.)
- Specifically FEA has been used over the past twenty years as a design tool to evaluate and improve roadside hardware
- More recently, implementation of FEA analysis is used in lieu of full-scale crash testing for eligibility (certification) for incremental design improvements

Advantages of FEA

- Use of FEA has been proven in numerous studies to be significantly more effective and efficient that testing alone
- Fewer full-scale crash tests would be needed by reducing the number of failed tests
- A more optimized design would be reached since significantly more simulations can be carried out at a significantly reduces cost
- Computer simulations also give more data than what can be extracted from the full-scale crash tests.
 - ⇒ The results from the simulations include displacements, velocities, and accelerations of every point on the vehicle and the roadside system
 - ⇒ The energies absorbed by each component of the vehicle and each component of the roadside system are also computed and stored in the simulation results.
- This information could be used to identify critical weaknesses in the design and give better understanding of the roadside system performance

FEA Approach as a Design Tool

- Make use of numerical tools to develop better understanding of barrier features and parameters affecting its safety performance
- > Model Development
 - ⇒ Develop computer models and modeling methodologies
 - ⇒ Calibrate component and material models
 - ⇒ Validate full model (full-scale crash tests)
- Run iterative computer simulations to optimize/improve barrier performance
- > Validate computer results using crash tests
- > Run further simulations to study special cases

FEA for Roadside Hardware Eligibility

- V&V procedures for eligibility submission are based on Report W179 developed under an NCHRP study (NCHRP Project 22-24)
- Currently FEA eligibility submission are accepted for incremental (minor) hardware improvements

> FEA procedure would consists of following steps:

- ⇒ Create and calibrate roadside hardware model (components test)
- ⇒ Validate model using full-scale crash test on baseline device
- ⇒ Incorporate design modification in barrier model
- ⇒ Compare simulation results of modified design to baseline design
- ⇒ Document all model calibrations (for both vehicle and roadside device), model validations, barrier design update and comparisons between baseline and updated model (comparisons should follow Report W179 guidelines)

Roadside Testing Background

- Report 350/MASH describe testing procedures and evaluation criteria for roadside hardware
- Based on Worst Practical Conditions
- Test matrices for different roadside devices
 - ⇒ Longitudinal Barriers
 - ⇒ Terminals and Crash Cushions
 - Support Structures, Work-Zone Traffic Control Devices, and Breakaway Utility Poles
 - ⇒ Truck-Mounted and Trailer-Mounted Attenuators (TMAs)

> Six Test Levels

- ⇒ Levels 1-3 based on speed
 - TL1 –50 km/h (31 mph)
 - TL2 –70 km/h (43 mph)
 - TL3 –100 km/h (62 mph)
- ⇒ Levels 4-6 add large trucks
 - Single unit truck
 - Tractor Trailer
 - Tractor tanker

TABLE 1-1. Test Levels

Test	Test Vehicle	Test Conditions		
Level	Designation [*] and Type	Speed mph (km/h)	Angle (degrees)	
1	1100C (Passenger Car)	31 (50.0)	25	
	2270P (Pickup Truck)	31 (50.0)	25	
2	1100C (Passenger Car)	44 (70.0)	25	
	2270P (Pickup Truck)	44 (70.0)	25	
3	1100C (Passenger Car)	62 (100.0)	25	
	2270P (Pickup Truck)	62 (100.0)	25	
4	1100C (Passenger Car)	62 (100.0)	25	
	2270P (Pickup Truck)	62 (100.0)	25	
	10000S (Single-Unit Truck)	56 (90.0)	15	
5	1100C (Passenger Car)	62 (100.0)	25	
	2270P (Pickup Truck)	62 (100.0)	25	
	36000V (Tractor-Van Trailer)	50 (80.0)	15	
6	1100C (Passenger Car)	62 (100.0)	25	
	2270P (Pickup Truck)	62 (100.0)	25	
	36000T (Tractor-Tank Trailer)	50 (80.0)	15	

Test Matrix

Impact Acceptable Impact lm-Evaluation Barrier Test Test IS Range,^a Vehic. Speed,^a Angle,^a pact Section^c Criteriab Level No. mph (km/h) θ, deg. Point kip-ft (kJ) Length-of-31 (50.0) 25 ≥13 (17.4) A,D,F,H,I 1-10 1100C (c) 2270P A,D,F,H,I need 1-11 31 (50.0) 25 (c) ≥27 (36.0) 1 25 ≥13 (17.4) A,D,F,H,I 1-20^d 1100C 31 (50.0) (c) Transition 1-21 2270P 31 (50.0) 25 ≥27 (36.0) A,D,F,H,I (c) Length-of-2-10 1100C 44 (70.0) 25 (c) ≥25 (34.2) A,D,F,H,I 2-11 2270P 44 (70.0) 25 ≥52 (70.5) A,D,F,H,I need (c) 2 2-20^d 1100C 44 (70.0) 25 (c) ≥25 (34.2) A,D,F,H,I Transition 2-21 2270P 44 (70.0) 25 (c) ≥52 (70.5) A,D,F,H,I Length-of-3-10 1100C 62 (100.0) 25 (c) ≥51 (69.7) A,D,F,H,I need 3-11 2270P 62 (100.0) 25 (c) ≥106 (144) A,D,F,H,I 3-20^d 1100C 62 (100.0) 25 (c) ≥51 (69.7) A,D,F,H,I Transition 62 (100.0) 25 A,D,F,H,I 3-21 2270P (c) ≥106 (144) 25 ≥51 (69.7) A,D,F,H,I 4-10 1100C 62 (100.0) (c) Lenath-of-4-11 62 (100.0) 25 ≥106 (144) A,D,F,H,I 2270P (c) need 4-12 56 (90.0) 15 ≥142 (193) A,D,G 10000S (c) 4 25 4-20^d 1100C 62 (100.0) ≥51 (69.7) A,D,F,H,I (c) 62 (100.0 25 Transition 4-21 2270P ≥106 (144) A,D,F,H,I (c) 4-22 10000S 56 (90) 15 (c) ≥142 (193) A,D,G 62(1,0,0)5-10 1100C 25 (c)>51 (69.7) ADEHI Length-of-3-10 ≥51 (69.7) A,D,F,H,I 1100C 62 (100.0) 25 (c) 3-11 2270P 25 (c) ≥106 (144) A.D.F.H.I need 62 (100.0) 5 22 ≥404 (548) A,D,G 36000V 50 J^r 0.0) 15 (c) 62 (00.0) 6-10 1100C 25 (c) ≥51 (69.7) A,D,F,H,I Length-of 6-11 2270P 62 00.0) 25 ≥106 (144) A,D,F,H,I need 15 6-12 36000T (80.0) ≥404 (548) A,D,G 5 6 6-20^d 1100C (100.0) 25 ≥51 (69.7) A,D,F,H,I (c) insition 6-21 2270P 2 (100.0) 25 ≥106 (144) A,D,F,H,I (c) 6-22 36000T 50 (80.0) 15 ≥404 (548) A.D.G (c) Vehicle Speed Evaluation criteria Angle

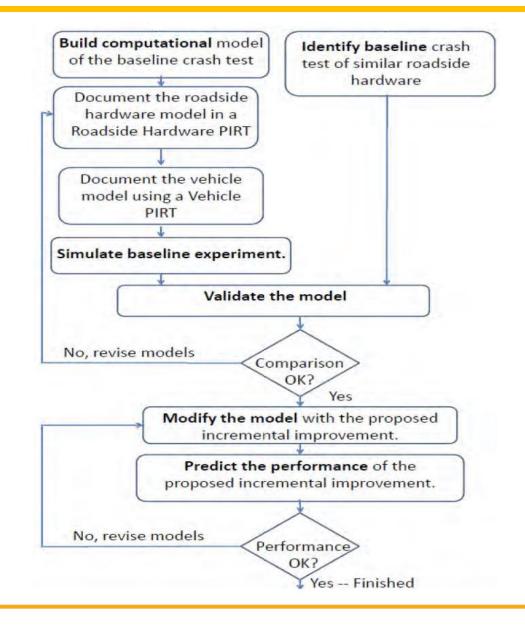
TABLE 2-2. Recommended Test Matrices for Longitudinal Barriers

Ref: Manual for Assessing Safety Hardware

Evaluation Criteria

Roadside barriers are evaluated based on three types of criteria

- ⇒ Structural adequacy of the tested device
- ⇒ Occupant risk
- ⇒ Vehicle trajectory



Report W179 V&V Procedure

Ref: NCHRP Report W179

Vehicle and Barrier Model Calibrations

- Calibrations consist of using experimental data (from coupon and component tests) and known analytical solutions to obtain/define unknown parameters in the model
- The parameters include material properties, contact frictions, connection failure, etc.
- Calibration tests are often setup such that one (or few) of the unknown parameters influence the outcome of the test
- Calibrations are performed on both the vehicle and barrier models and aimed at addressing all key parameters affecting the outcome of the simulation

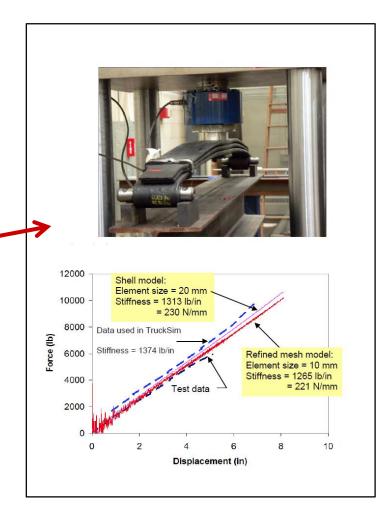
Sample Barrier Component Calibration

4			
M	GI		I G E
		R S	

	PHENOMENA # 1: Plastic deformation of guardrail posts due to bending about weak axis					
	<i>Sprauge-Geers Metrics</i> List all the data channels to be compared below. Using RSVVP calculate the M and P metrics comparing the experiment and the simulation. Values less than or equal to 20 are acceptable.	м	Р	Pass?		
	Force-Displacement	3.6	1.1	Yes		
ted? ed? ated?	 ANOVA Metrics List all the data channels to compare in the rows below. Use RSVVP to calculate the ANOVA metrics and enter the values below. The following criteria must be met: The mean residual error must be less than or equal to five percent of the peak acceleration 	sidual	Standard Deviation of Residuals			
ated ative ation	 (ē ≤ 0.05 · a_{Peak}) The standard deviation of the residuals must be less than or equal to 25 percent of the peak acceleration (σ ≤ 0.25 · a_{peak}) 	Mean Residual	Standard Do of Residuals	Pass?		
ative	Force-Displacement	0.03	0.03	Yes		
tion	PHENOMENA Three-Point Bend Test of W150x13.5 Post About Weak Ax.	12				
ative	14000	15				
tion	12000 -					
ative	and the second second					
tion	10000	1				
ated	<u>a</u> 8000 - <u>s</u> 6000 - <u>a</u> 2000 - <u>a</u> 2000 - <u>a</u> 200			K		
	0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6					
	Displacement (in)					

Figure 52. Example of a validation sheet from a roadside hardware PIRT.

Table 20. Phenomena Importance Ranking Table (PIRT) for the G4(1S).


	Validated Phenomenon	Validated? Verified? Calibrated?
1.	Three-Point Bend Test of W150x13.5 Post About Weak Axis	Validated
2.	Load-to-rupture of splice connection under quasi-static axial loading	Qualitative Validation
3.	Pull-through of post-bolt-head connection to w-beam using axial load machine	Qualitative Validation
4.	Full-scale bogie impact tests of the W150x13.5post embedded in 1,980 kg/m ³ soil	Qualitative Validation
5.	Full-scale bogie impact tests of the W150x13.5post embedded in 2,110 kg/m ³ soil	Qualitative Validation
6.	Full-scale bogie impact tests of the W150x13.5post embedded in 2,240 kg/m ³ soil	Validated

Sample Vehicle Model Calibration

Table 21. Partial PIRT for the NCAC C2500R pickup truck. (83)

Phenomena	Summary	Valid?
Front suspension coil springs	Properties calibrated with physical test data	Calibration
Front suspension dampers	Properties verified with physical test data obtained from external source and calibrated with laboratory tests conducted at WPI	Calibration
Suspension stops on front A-arms	Response verified through visual observation of computer model results	Verification
Stabilizer bar	Response verified through visual observation of computer model results	Verification
Rear leaf spring suspension	Spring properties for vertical stiffness calibrated with physical test data. Lateral and torsional stiffness properties obtained analytically.	Calibration
Steering system properties	Properties calibrated with physical tests	Calibration
Steer stops on steering system	Response verified through visual observation of computer model results	Verification
Inertial Properties	Properties calibrated through data obtained from NHTSA and TTI	Calibration
Vertical front suspension response	Roll-off drop tests	Validation*
Vertical rear suspension response	Roll-off drop tests	Validation*
Front and rear suspension response	90-degree curb traversal tests – 6-inch AASHTO type B curb	Validation*
Front and rear suspension response and steer response * Ouglitative assessment only	25-degree curb traversal tests – 6-inch AASHTO type B curb	Validation*

* Qualitative assessment only

FORGE

UN

Full-scale Verification & Validations

> Model verification and validation consists of three parts:

⇒ Analysis Solution Verification

 Checks that simulation is stable and results are conforming to the conservation laws (i.e. the numerical solution obeyed basic laws of physics)

⇒ Time History Evaluation

- Quantitative comparisons of time histories between test and simulation
- Six time history curves are often compared (3 accelerations & 3 angular rates at vehicle cg)
- A program, Roadside Safety Verification and Validation Program (RSVVP), was created to compare the curves using different statistical variation metrics (Sprague-Geers MPC and ANOVA)
- Simulation time histories are compared to original measured data
- Acceptance (pass/fail) criteria are determined based on variation between repeated tests

⇒ Phenomena Importance Ranking Tables (PIRTs)

- Comparison of the phenomena observed in the crash test and simulation
- Comparisons are based on the evaluation criteria of the barrier (e.g. ORA, Roll angle, etc.)
- All evaluation criteria are compared
- PIRTs are device dependent

Analysis Solution Verification

Table C1-1. Analysis Solution Verification Table.

Verification Evaluation Criteria				
vernication Evaluation Criteria	(%)	Pass?		
<i>Total energy</i> of the analysis solution (i.e., kinetic, potential, contact, etc.) must not vary more than 10 percent from the beginning of the run to the end of the run.	1.3	YES		
<i>Hourglass Energy</i> of the analysis solution at the end of the run is less than <i>five percent</i> of the total <i>initial energy</i> at the <i>beginning</i> of the run.	0	YES		
<i>Hourglass Energy</i> of the analysis solution at the end of the run is less than <i>ten percent</i> of the total <i>internal energy</i> at the <i>end</i> of the run.	0	YES		
The part/material with the highest amount of hourglass energy at the end of the run is less than ten percent of the total internal energy of the part/material at the end of the run.	0	YES		
Mass added to the total model is less than five percent of the total model mass at the beginning of the run.	0	YES		
The part/material with the most mass added had less than 10 percent of its initial mass added.	0	Yes		
The moving parts/materials in the model have less than five percent of mass added to the initial moving mass of the model.	0	Yes		
There are no shooting nodes in the solution?	Yes	Yes		
There are no solid elements with negative volumes?	Yes	Yes		

The Analysis Solution (check one) \boxtimes passes \square does NOT pass <u>all</u> the criteria in Table C1-1 \square with \boxtimes without exceptions as noted.

Ref: NCHRP Report W179

Time History Evaluation

Table C1-2. Roadside Safety Validation Metrics Rating Table - Time History Comparisons

	1		1 or equal	e M and to 40 are	P metrics accepta			ne inter ec; 0.7 s	
		RSVVP Curve	e Prepro	cessing C	ptions				
	Filter	Sync.	Sh	lift	Dr	ift	м	Р	Pass?
	Option	Option	True Curve	Test Curve	True Curve	Test Curve			
X acceleratio	n CFC 180	Min. area of Residuals	Y	N	Y	Ν	21.5	33.3	Y
Y acceleratio	n CFC 180	Min. area of Residuals	Y	N	Y	N	43.9	35.7	N
Z acceleratio	n CFC 180	Min. area of Residuals	Y	Ν	Y	Ν	21.1	43.0	Ν
Roll rate	CFC 180	Min. area of Residuals	Ν	N	Ν	N	35.3	32.7	Y
Pitch rate	CFC 180	Min. area of Residuals	Ν	N	Ν	Ν	13.3	48.0	Ν
Yaw rate	CFC 180	Min. area of Residuals	Ν	N	N	N	11.7	8.7	Y
List all the data using RSVVP a met: • The me acceler • The sta the pea	• The mean residual error must be less than five percent of the peak acceleration ($\overline{e} \le 0.05 \cdot a_{Peak}$) and						Mean Residual	C.0 Standard Deviation of Residuals	Pass? Y
	X acceleration/Peak Y acceleration/Peak Z acceleration/Peak						0.02	0.34	Y
							0.05	0.27	Y Y
Roll rate	u tak						0.02	0.32	Y
Pitch rate							0.02	0.36	N
Yaw rate							0.04	0.12	Y

Time History Evaluation (Multi-Channel)

Table C1-3(a). Roadside Safety Validation Metrics Rating Table – Time History Comparisons

Evaluation Criteria (time interval [0 sec; 0.7 sec])						
		Channels (Select which were us	sed)			
\boxtimes	X Acceleration	Y Acceleration	🛛 Z .	Accelera	tion	
\boxtimes	Roll rate	X Ya	w rate			
	Multi-Channel Weights -Area (II) Method-	X Channel – 0.255116 Y Channel – 0.210572 Z Channel – 0.034312 Yaw Channel – 0.392648 Roll Channel – 0.06581 Pitch Channel – 0.041542	0.1 0 0.1 0 0.1	.4 .3 .2 .2 .5 .1	Z acc Yaw P rate r	toll Pitch ate rate
0	<i>Sprague-Geer Metrics</i> Values less or equal to 40 are	acceptable.		M 22.9	P 25	Pass? Y
Р	 ANOVA Metrics Both of the following criteria must be met: The mean residual error must be less than five percent of the peak acceleration				Standard Deviation of Residuals	Pass? Y

The Analysis Solution (check one) 🛛 passes 🗌 does NOT pass <u>all</u> the criteria in Table C1-3.

Table C1-4. Evaluation Criteria Test Applicability Table.

Evaluation Factors			Evaluation Cri	iteria		Applicable Tests			
Structural Adequacy	A	Test article should co should not penetrate, controlled lateral defl	under-ride, or over	ride the installation		10, 11, 12, 20, 21, 22, 35, 36, 37, 38			
	в	The test article should breaking away, fractu		n a predictable man	ner by	60, 61, 70, 71, 80, 81			
		penetration or control	lled stopping of the	vehicle.		30, 31,, 32, 33, 34, 39, 40, 41, 42, 43, 44, 50, 51, 52, 53			
Occupant Risk	about a property of the proper				A11				
	Detached elements, fragments or other debris from the test article, or					70, 71			
	F	The vehicle should re although moderate ro	main upright durin 11, pitching and ya	ig and after the coll wing are acceptable	ision	All except those listed in criterion G			
	G	It is preferable, althou upright during and af	igh not essential, t	hat the vehicle rema	ain	12, 22 (for test level 1 – 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44)			
	н		ict velocities shoul impact Velocity Li Preferred 9	d satisfy the follow mits (m/s) Maximum 12	ing:	10, 20, 30,31, 32, 33, 34, 36, 40, 41, 42, 43, 50, 51, 52, 53, 80, 81			
		Longitudinal	3	5		60, 61, 70, 71			
	I		n accelerations sh edown Acceleratio Preferred 15	ould satisfy the foll n Limits (g`s) Maximum 20	owing:	10, 20, 30,31, 32, 33, 34, 36, 40, 41, 42, 43, 50, 51, 52, 53, 60, 61, 70, 71, 80, 81			
Vehicle Trajectory	The occupant impact velocity in the longitudinal direction should ne exceed 40 ft/sec and the occupant ride-down acceleration in the longitudinal direction should not exceed 20 G's.					11,21, 35, 37, 38, 39			
	Μ	The exit angle from t percent of test impact contact with test devi	angle, measured a			10, 11, 12, 20, 21, 22, 35, 36, 37, 38, 39			
	N	Vehicle trajectory bel	hind the test article	is acceptable.		30, 31, 32, 33, 34, 39, 42, 43, 44, 60, 61, 70, 71, 80, 81			

Ref: NCHRP Report W179

			Evaluation Criteria	Known Result	Analysis Result	Difference Relative/ Absolute	Agree?
		A1	Test article should contain and redirect the vehicle; the vehicle should not penetrate, under-ride, or override the installation although controlled lateral deflection of the test article is acceptable. (Answer Yes or No)	Yes	Yes	\times	YES
Icy		A 2	Maximum dynamic deflection: - Relative difference is less than 20 percent or - Absolute difference is less than 0.15 m	1.0 m	0.985m	1.5% 0.02 m	YES
Structural Adequacy	A	A3	Length of vehicle-barrier contact: - Relative difference is less than 20 percent or - Absolute difference is less than 2 m	0.691 s	0.690 s	0.1%	YES
uctura		A4	The relative difference in the number of broken or significantly bent posts is less than 20 percent.	3	3	0	YES
Str		A5	Did the rail element rupture or tear (Answer Yes or No)	No	No	$\left \right\rangle$	YES
		A6	Were there failures of connector elements (Answer Yes or No).	Yes	Yes	\ge	YES
		A7	Was there significant snagging between the vehicle wheels and barrier elements (Answer Yes or No).	Yes	Yes	\ge	YES
		A8	Was there significant snagging between vehicle body components and barrier elements (Answer Yes or No).	No	No	\succ	YES

Table 27. Structural adequacy phenomena for test case 1.

Table 28. Occupant risk phenomena for test case 1.

			Evaluation Criteria	Known Result	Analysis Result	Difference Relative/ Absolute	Agree?
		D	Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians or personnel in a work zone. (Answer Yes or No)	Pass	Pass	\mathbf{X}	YES
		F1	The vehicle should remain upright during and after the collision although moderate roll, pitching and yawing are acceptable. (Answer Yes or No)	Pass	Pass	\mathbf{X}	YES
	F	F2	Maximum roll of the vehicle: - Relative difference is less than 20 percent or - Absolute difference is less than 5 degrees.	-8.7	-10.1	16% 1.4 deg	YES
	-	F3	Maximum pitch of the vehicle is: - Relative difference is less than 20 percent or - Absolute difference is less than 5 degrees.	-3.3	-4.3	30% 1.0 deg	YES
Risk		F4	Maximum yaw of the vehicle is: - Relative difference is less than 20 percent or - Absolute difference is less than 5 degrees.	41	42.8	4% 1.8 deg	YES
Occupant Risk			The occupant impact velocity in the longitudinal direction should not exceed 12 m/sec and the occupant ridedown acceleration in the longitudinal direction should not exceed 20 G's.				
		L1	Longitudinal OIV (m/s)	5.4	4.7	13% 0.7m/s	YES
		L2	• Lateral OIV (m/s)	4.4	5.0	13.6% 0.6 m/s	YES
		L3	THIV (m/s)	6.3	6.4	1.6% 0.1 m/s	YES
		L4	Occupant accelerations: - Relative difference is less than 20 percent or - Absolute difference is less than 4 g's.				
		L5	Longitudinal ORA	7.9	8.9	12.7% 1.0 G	YES
		L6	Lateral ORA	8.4	10.0	19.0% 1.6 G	YES
		L7	• PHD	12.1	13.2	9.1% 1.2 G	YES
			• ASI	0.68	0.72	5.9% 0.04	YES

Ref: NCHRP Report W179

			Evaluation Criteria	Known Result	Analysis Result	Difference Relative/ Absolute	Agree?
Vehicle Trajectory	М	M1	The exit angle from the test article preferable should be less than 60 percent of test impact angle, measured at the time of vehicle loss of contact with test device.	15.5° 61%	17.3° 68%	\ge	YES
		M 2	Exit angle at loss of contact: - Relative difference is less than 20 percent or - Absolute difference is less than 5 degrees.	15.5°	17.3°	11.6% 1.8 deg	YES
		M3	Exit velocity at loss of contact: - Relative difference is less than 20 percent or - Absolute difference is less than 5 degrees.	55 km/h	62 km/h	12.7% 7.0 km/hr	YES
		M4	One or more vehicle tires failed or de-beaded during the collision event (Answer Yes or No).	Yes	N.A.	\succ	

Table 29. Vehicle trajectory phenomena for test case 1.

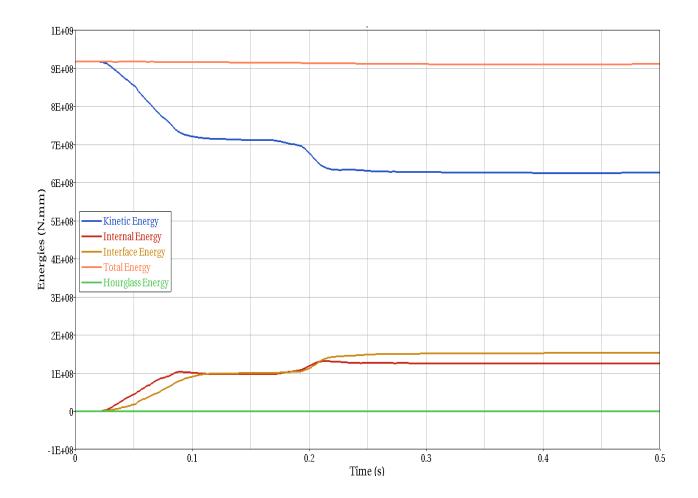
Sample V&V Case: Silverado / New Jersey Concrete Median Barrier

➤ TTI test 476460-1-4

Impact Condition

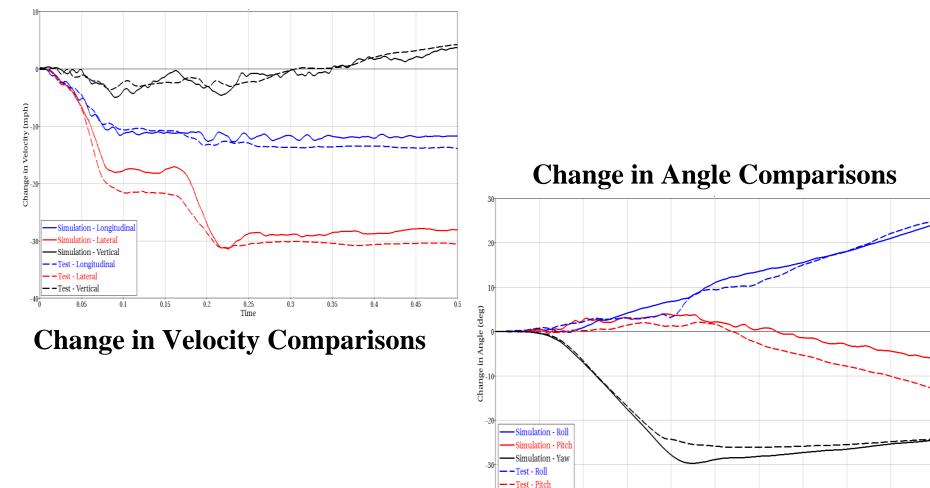
- ⇒ 62.6 mi/hr
- ⇒ 25.2 deg

2270P - NJ CMB - 100 km/hr - 25 deg



2270P - NJ CMB - 100 km/hr - 25 deg

Energy Balance Plot



Analysis Solution Verification Summary

Verification Evaluation Criteria	Change (%)	Pass?
Total energy of the analysis solution (i.e., kinetic, potential, contact, etc.) must not vary more than 10 percent from the beginning of the run to the end of the run.	<1%	YES
Hourglass Energy of the analysis solution at the end of the run is less than 5 % of the total initial energy at the beginning of the run	<1%	YES
The part/material with the highest amount of hourglass energy at any time during the run is less than 5 % of the total initial energy at the beginning of the run.	<1%	YES
Mass added to the total model is less than 5 % the total model mass at the start of the run.	<1%	YES
The part/material with the most mass added had less than 10 % of its initial mass added.	<1%	YES
The moving parts/materials in the model have less than 5 % of mass added to the initial moving mass of the model.	<1%	YES
There are no shooting nodes in the solution?	NA	YES
There are no solid elements with negative volumes?	NA	YES

-- Test - Yaw

0.1

0.15

0.2

0.25

Time (s)

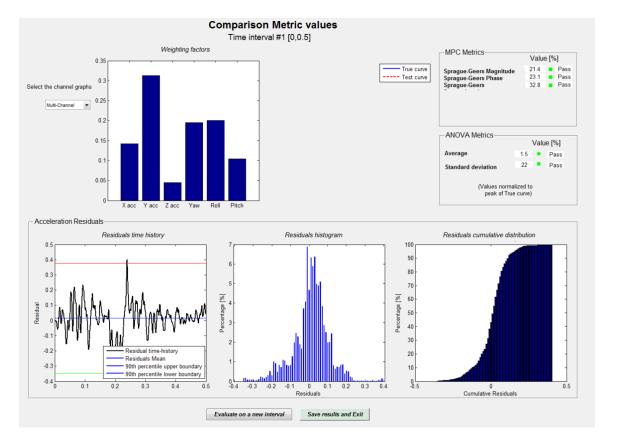
0.3

0.35

0.4

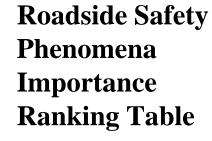
0.45

0.5



Single Channels RSVVP Comparisons

Sin	gle Channel Time History Comparison	Results	Time inter	val [0 sec	- 0.5 sec]	
0	Sprauge-Geer Metrics	M	Р	Pass?		
	X acceleration		52.9	35.6 16.2 7 45.3 4 9.5 3 24.4 4 39.9 m SD 2 29.37 4 12.15 5 44.94 1 17.28 6 53.95 nterval [0 sec; 0.142263141 0.312496147 0.045240712 0.19476326 0.200826808 0.104409933 0.104409933	NO	
	Y acceleration		3.2	16.2	YES	
	Z acceleration		71.7	45.3	NO	
	Yaw rate	13.4	9.5	YES		
	Roll rate	16.8	24.4	YES		
	Pitch rate		35.4	39.9	YES	
Ρ	ANOVA Metrics		Mean	SD	Pass?	
	X acceleration/Peak		1.32	29.37	YES	
	Y acceleration/Peak		0.84	12.15	YES	
	Z acceleration/Peak	0.66	44.94	NO		
	Yaw rate	0.2	14.87	YES		
	Roll rate		0.21	17.28	YES	
	Pitch rate		10.86	53.95	NO	
Mι	Ilti-Channel Weighting Factors		Time inter	val [0 sec;	; 0.5 sec]	
Μι	Ilti-Channel Weighting Method	X Channel	0.142263141			
	Peaks Area I	Y Channel	0.	31249614	7	
	Area II Inertial	Z Channel	0.045240712			
		Yaw Channel	0.19476326			
		0.200826808				
		0.104409933				
Spi	Sprauge-Geer Metrics			Ρ	Pass?	
	All Channels (weighted)	21.4	23.1	YES		
AN	ANOVA Metrics			SD	Pass?	
	All Channels (weighted)		1.5	22	YES	


NCHRP 22-24 Comparison Metrics

All Channels Comparisons (Weighted)

			Evaluation Criteria	Known Result	Analysis Result	Relative Diff. (%)	Agree?
	-	A1	Test article should contain and redirect the vehicle; the vehicle should not penetrate, under-ride, or override the installation although controlled lateral deflection of the test article is acceptable.	Yes	Yes		YES
acy		A2	The relative difference in the maximum dynamic deflection is less than 20 percent.	0.0 m	0.0 m	0%	YES
qequ		A3	The relative difference in the time of vehicle-barrier contact is less than 20 percent.	0.238 s	0.214 s	10%	YES
Structural Adequacy		A4	The relative difference in the number of broken or significantly bent posts is less than 20 percent.	Yes	Yes		YES
ctuı		A5	Barrier did not fail (Answer Yes or No).	Yes	Yes		YES
tru		A6	There were no failures of connector elements (Answer Yes or No).	Yes	Yes		YES
S		A7	There was no significant snagging between the vehicle wheels and barrier elements (Answer Yes or No).	Yes	Yes		YES
		A8	There was no significant snagging between vehicle body components and barrier elements (Answer Yes or No).	Yes	Yes		YES
		D	Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians or personnel in a work zone (Answer Yes or No).	Vac	Yes		YES
	F	F1	The vehicle should remain upright during and after the collision. The maximum pitch & roll angles are not to exceed 75 degrees.	Yes	Yes		YES
		F2	Maximum vehicle roll – relative difference is less than 20% or absolute difference is less than 5 degrees.	25 (.5s)	24 (.5s)	4% 1 deg	YES
		F3	Maximum vehicle pitch – relative difference is less than 20% or absolute difference is less than 5 deg.	12 (.5s)	7 (.5s)	41% 5 deg	YES
Risk		F4	Maximum vehicle yaw – relative difference is less than 20% or absolute difference is less than 5 deg.	30 (.5s)	26 (.5s)	13% 4 deg	YES
Occupant Risk	H	H1	Longitudinal & lateral occupant impact velocities (OIV) should fall below the preferred value of 30 ft/s (9.1 m/s), or at least below the maximum allowed value of 40 ft/s (12.2 m/s)	Yes	Yes		YES
Oce		H2	Longitudinal OIV (m/s) - Relative difference is less than 20%t or absolute difference is less than 2 m/s	4.3	4.7	9% 0.4 m/s	YES
		H3	Lateral OIV (m/s - Relative difference is less than 20% or absolute difference is less than 2 m/s	9.2	7.9	14% 1.3 m/s	YES
	I	I1	Longitudinal & lateral occupant ridedown accelerations (ORA) should fall below the preferred value of 15.0 g, or at least below the maximum allowed value of 20.49 g.	Yes	Yes		YES
		I2	Longitudinal ORA (g) - Relative difference is less than 20% or absolute difference is less than 4 g's	5.6	7.6	35% 2 g	YES
		I3	Lateral ORA (g) - Relative difference is less than 20% or absolute difference is less than 4 g's	9.6	12.9	34% 3 g	YES
	'ehio ajec	cle tory	The vehicle rebounded within the exit box. (Answer Yes or No)	Yes	Yes		YES

Composite Verification and Validation Summary

List the Report MAS			
Table C – AnalysisSolutionVerification	Did all solution verification criteria in tab	le pass?	YES
Table D - RSVVP Results	Do all the time history evaluation scores f channel factors result in a satisfactory co the comparison passes the criterion)?	U	NO
	If all the values for Single Channel co pass, did the weighted procedure result	-	YES
Table E - Roadside Safety Phenomena Importance Ranking Table	Did all the critical criteria in the PIRT Tal Note: Tire deflation was observed in the the simulation. This due to the fact that the not incorporated in the model. This is con have a critical effect on the outcome of th	test but not in ire deflation in nsidered not to	YES
Overall	Are the results of Steps I through III all YES)? If all three steps result in a "Y comparison can be considered validated of of the steps results in a negative response, be considered validated or verified.	affirmative (i.e., 'ES'' answer, the or verified. If one	YES

Thank You!

