

Federal Aviation Administration

FAA / CAAs "Composite Meeting" - CMH-17 (Rev G): Volume 3, Chapter 3 -Tutorial: Introductory Training

Larry Ilcewicz Lester Cheng FAA Composite Team

Singapore, Singapore September 1-4, 2015

FAA / CAAs "Composite Meeting" - CMH-17 V3C3 Development & Content -

- Development of CMH-17 V3C3
 - Background Environment & CMH-17
 - Working Group Charter & Execution
 - CMH-17 V3C3 Content Outline
- CMH-17 V3C3 Content Review
 - Regulation and Certification
 - Design Substantiation
 - Production Essentials
 - Maintenance Technical Issues
- CMH-17 V3C3 Tutorial A Glance

FAA / CAAs Composite Safety & Certification Meeting CAA of Singapore, Singapore; Sep 01-04, 2015

FAA / CAAs "Composite Meeting"

- CMH-17 V3C3 Development & Content -
- Development of CMH-17 V3C3
 - Background Environment & CMH-17
 - Working Group Charter & Execution
 - CMH-17 V3C3 Content Outline
- CMH-17 V3C3 Content Review
 - Regulation and Certification
 - Design Substantiation
 - Production Essentials
 - Maintenance Technical Issues
- CMH-17 V3C3 Tutorial A Glance

CMH-17: V3C3 Tutorial

"Aircraft Structure Certification and Compliance"

- Building on V3C3: A tutorial was populated as a 6-Hour short lessen plan (2007-2008).
- First offered in CMH-17 Meeting in Ottawa (Aug/2008). Tutorial well received (needed a larger room ≈ 70+).
- Tutorial has been offered in every CMH-17 Coordination Meeting since 2008. [missed Meeting in SLC (Mar/2015)]
- Tutorial was offered in the special CMH-17 European Meeting in Delft/Netherland (Sep/2011).
- Tutorial had been offered on-site for Boeing and aroused interest of a few major concerns (e.g., P&W, NASA, USAF).
- Revenue from Tutorial has been used to support the operation of CMH-17 Organization.
- Key instructors include: Charlie Seaton, Hank Offermann, Simon Waite, Larry Ilcewicz.

FAA / CAAs Composite Safety & Certification Meeting CAA of Singapore, Singapore; Sep 01-04, 2015

CMH-17: V3C3 Tutorial - Organization & Lesson Plan Glance -

- Tutorial Lesson Plan was structured/developed basically follows the V3C3 outline and contents.
 - "Module #" ↔ "Section #"
 [e.g., Module X ↔ Section. 3.X]
 - "Objective #" for info contained in Sections & Sub-Sections.
 [e.g., Objective 1 ↔ Sec. 3.1 (Introduction)]
 [e.g., Objective 3 ↔ Sec. 3.2.1 (Initial Airworthiness)]
 - V3C3 Section 3.7 (Guidance and Reports) is included in Module 6 as Objective 33.
- Some contents were extended from Level I paving path for Level II courses.
- Key instructors include: Charlie, Hank, Simon & Larry.
 A typical tutorial organization is illustrated in a follow-up chart.
- A tutorial registration fee of \$500 is typically charged. This fee covers also CMH-17 Meeting registration.

FAA / CAAs Composite Safety & Certification Meeting

CAA of Singapore, Singapore; Sep 01-04, 2015

Composite Materials Handbook-17 Tutorial CERTIFICATION

Module 1 (Objective 2) Tutorial organization

	START	END	MODULE	OBJ	V3C3	PRESENTER
8	8-00 A M	8:10 AM	ONE: INTRODUCTION	1	3.1.1	Seaton
	8:00 AIVI			2	3.1.2	Seaton
	8:10 AM	9:00 AM	TWO: CERTIFICATION	3	3.2.1	Offermann
				4	3.2.2	Offermann
				5	3.2.3	Offermann
				6	3.2.4	Offermann
		9:35 AM	THREE: REGULATIONS	7	3.3.1	Offermann
	9:00 AM			8	3.3.2	Offermann
				9	3.3.3	Offermann
	9:35 AM	9:55 AM	BREAK			
		10:40 AM	FIVE: PRODUCTION	23	3.5	Offermann
				24	3.5.1	Offermann
	9:55 AM			25	3.5.2	Offermann
				26	3.5.3	Offermann
				27	3.5.4	Offermann

Module 1 (Objective 2)

Tutorial organization

START	END	MODULE	OBJ	V3C3	PRESENTER
	11:50 AM	FOUR: DESIGN SUBSTANTIATION	10	3.4	Waite
			11	3.4.1	Waite
			12	3.4.2	Waite
10:40 AM			19	3.4.9	Waite
			20	3.4.10	Waite
			21	3.4.11	Waite
			22	3.4.12	Waite
	12:20 PM		13	3.4.3	Offermann
			14	3.4.4	Offermann
11:50 AM			15	3.4.5	Offermann
			16	3.4.6	Offermann
			17	3.4.7	Offermann
12:20 PM	1:30 PM	LUNCH			
1:30 PM	2:30 PM	FOUR: DESIGN SUBSTANTIATION	18	3.4.8	Waite
2.20 014	2:45 PM	SIX: MAINTENANCE	28	3.6	Offermann
2:30 PIM			29	3.6.1	Offermann
	3:30 PM		30	3.6.2	Seaton
2.45 DM			31	3.6.3	Seaton
2:45 PIVI			32	3.6.4	Seaton
			33	3.7	Seaton

2

Module 1: Introduction (Section 3.1)

- Objective 1: Background, purpose and scope
- Objective 2: Organization

Module 2: Certification (Section 3.2)

- Objective 3: Initial airworthiness
- Objective 4: Continued airworthiness
- Objective 5: Product modification
- Objective 6: Qualified workforce and teamwork

Module 3: Regulations (Section 3.3)

- Objective 7: Structure, design and construction
- Objective 8: Production approval
- Objective 9: Maintenance and repair

Module 4: Design Substantiation (Section 3.4)

- Objective 10: Critical technical issues
- Objective 11: Design and process documentation (3.4.1)
- Objective 12: Materials and adhesives qualification (3.4.2)
- Objective 13: Environmental exposure (3.4.3)
- Objective 14: Structural bonding (3.4.4)
- Objective 15: Tooling and part cure processes (3.4.5)
- Objective 16: Defect detection overview (3.4.6)
- Objective 17: Structural conformity (3.4.7)
- Objective 18: Structural substantiation (3.4.8)
- Objective 19: Flutter substantiation (Aero-elastic stability) (3.4.9)
- Objective 20: Thermal issues (3.4.10)
- Objective 21: Lightning strike protection (3.4.11)
- Objective 22: Crashworthiness (3.4.12)

Load requirements Overview

Minimum generic load requirements are (metallic and composites):

Damage types Overview

Define damage and defects – terminology to aid communication:

Category	Examples (not inclusive of all damage types)
<u>Category 1</u> : Allowable damage that may go	Barely visible impact damage (BVID), scratches,
undetected by scheduled or directed field	gouges, minor environmental damage, and allowable
inspection (or allowable mfg defects)	mfg. defects that retain ultimate load for life
<u>Category 2</u>: Damage detected by scheduled	VID (ranging small to large), deep gouges, mfg.
or directed field inspection @ specified	defects/mistakes, major <i>local</i> heat or environmental
intervals (repair scenario)	degradation that retain limit load until found
<u>Category 3</u>: Obvious damage detected	Damage obvious to operations in a "walk-around"
within a few flights by operations focal	inspection or due to loss of form/fit/function that must
(repair scenario)	retain limit load until found by operations
<u>Category 4</u>: Discrete source damage known	Damage in flight from events that are obvious to pilot
by pilot to limit flight maneuvers	(rotor burst, bird-strike, lightning, exploding gear tires,
(repair scenario)	severe in-flight hail)
<u>Category 5</u> : Severe damage created by anomalous ground or flight events (repair scenario) 18.8	Damage occurring due to rare service events or to an extent beyond that considered in design, which must be reported by operations for immediate action

Damage types: Categories 3 and 4

Repair Overview

Module 5: Production Essentials (Section 3.5)

- Objective 23: Manufacturing substantiation
- Objective 24: Critical elements regarding production implementation
- Objective 25: Manufacturing quality control
- Objective 26: Defect disposition requirements
- Objective 27: Modifications in the production process

Manufacturing substantiation Issues in production and type design substantiation

- Fabricate and assemble the certification test articles per design with specifications and processes *intended* for production
- Strive for manufacturing process maturity prior to large-scale tests
- Identify any process problems or bad design details

Manufacturing substantiation Building block substantiation

- Protect large non-recurring costs for certification and production
- Risk mitigation for design-specific detail and complex internal loads
- Establish material and process control
- Design and manufacturing integration
- Manufacturing process scaling
- Analysis validation
- Study variability, environmental, and damage effects as part of structural substantiation

Module 5 (Objective 24) Production implementation issues

- Identify key manufacturing steps
- Define manufacturing tolerances and any process limits, and sensitivities
- Develop test plans that substantiate manufacturing processes applied to production
- Develop test pyramids to best suit the material form and associated processes
- Maintain thorough manufacturing records of all products produced

Cirrus Factory

Details of Production Implementation for Composite Aircraft Structures

Composite material and component manufacturing occur simultaneously (i.e., properties being built into the fabrication process requires stringent quality control)

- Production conformity to type design must be performed throughout the composite lay-up, cure and assembly process
 - Essential for large integrated composite structures with reduced part count, e.g., thick bonded structure may become inaccessible after initial bond assembly (787 below: The nose and front fuselage shown here are molded from a single piece)

Module 5 (Objective 26) Defect disposition requirements

- Often difficult to forecast prior to production
- Primary methods of avoiding defects:
 - Regular quality control to ensure <u>consistent raw materials</u>
 - Close process control of manufacturing operations
 - Experience and related training for specific part details
- Defects, which may not be detected by factory inspections, should be included in structural substantiation for type certification
 - Additional databases are often needed with production experiences
- Composite design and maintenance practices rely on strict material and process quality controls, coupled with thorough factory NDI

Module 6: Maintenance (Section 3.6)

- Objective 28: Continued airworthiness
- Objective 29: Substantiated repair designs
- Objective 30: Importance of teamwork
- Objective 31 Damage detection and characterization
- Objective 32: Bonded and bolted repair processes
- Objective 33: Guidance and reports by regulatory bodies

Team success depends on skills and information of the participants

Detection and disposition of damage

OEM damage tolerance substantiation forms the basis for detection and disposition of damaged parts

Component records and source documentation consultation for ADL and RDL

Damage Types

High Energy Impact

Selecting bonded or bolted repairs

Bonded repairs:

- Provide effective load transfer Capable of restoring the original strength of the damaged part
- More efficient for thin laminates (< 2 mm) less weight
- Requires increased technician skills due to the greater degree of complexity

Bolted repairs

- More efficient for thick laminates less material removal from undamaged sections
- More easily inspected for structural integrity than are bonded repairs
- Bolted repairs do not require the same strict bond surface preparation and controls necessary for bonded repair

Module 6 (Objective 33) Regulatory reports and guidance

- FAA Regulatory and Guidance Library: http://www.airweb.faa.gov
- FAA Technical Reference and Research Library: <u>http://actlibrary.tc.faa.gov</u>
- EASA: <u>http://www.easa.europa.eu</u>
- TCCA: <u>http://www.tc.gc.ca/air/</u>
- SAE AIR Report: http://www.sae.org

CMH-17: V3C3 Tutorial Current Update Plan & Effort

CMH-17 V3C3 Tutorial

- Update content reflecting regulatory changes
- Add content reflecting recent safety guidance
- Include value-added data from CSET/CMfgT/CMT
- Update content reflecting lessons learned
- Elevate presentation matching V3C3 Rev H

FAA / CAAs Composite Safety & Certification Meeting CAA of Singapore, Singapore; Sep 01-04, 2015

FAA / CAAs "Composite Meeting" - CMH-17 V3C3 Development & Content -

- Thanks for Opportunity.
- Questions and/or Thoughts?
- Further Discussion.

We Meet Tomorrow (9 AM) "AC 20-107B"

FAA / CAAs Composite Safety & Certification Meeting CAA of Singapore, Singapore; Sep 01-04, 2015

