

Aeronautic seat solution

User-friendliness & Multi domain optimization

August 2012 / Wichita

Christophe Jacob, PhD

Copyright © ESI Group, 2012. All rights reserved.

1

End-to-end virtual prototyping for seats

USER-FRIENDLINESS

www.esi-group.com

Copyright © ESI Group, 2012. All rights reserved. 2

One compute model / One process

- The Dummy compute model: Hybrid II
 - Ready for automation
 - Equipped with standard belts

The Process

- Positioning
- Pitch & Roll
- Relaxation
- Sled test
- One click solution
 - All the steps can be chained

Positioning phase Can predict a final position or reproduce experiment

- Find position
 - The dummy is pulled by bars in order to reproduce the gravity effects in a very short time (150ms)
 - The so found position respects gravity equilibrium and can be used for sled test of pitch&roll
 - Here, the pelvis is just pulled downward and backward while feet are pulled to predefined positions

- Force position
 - While performing a sled test experiment, it is common to use a 3D measurement device to get the exact location of some points of the seat and dummy
 - In this case, it is possible to pull the dummy points toward these locations (yellow targets), keeping reasonable efforts
 - Here, the pelvis, knees, head and ankles are pulled toward point measured during experiment tests. Like this the simulation is as near as possible from the experimental conditions

Pitch & Roll

- It is possible to reproduce in a fast simulation the Pitch&Roll loads
 - With the belted dummy in its seat
 - The position when determined in the previous phase (find or force position)
 - From the positioning phase, prestresses in the dummy and in the seat are retrieved
 - For frontal or aft sled tests
 - The center of Pitch can be either on the front anchors either on the rear anchor
 - The dummy moves together with the seat
- It becomes easy to determine the worse Pitch&Roll situation
 - Just change the sign of the angle (+/-10° for both pitch and roll movements)
- Easy to set-up
 - Changing orientation of Pitch&Roll take less than 2 minutes
 - Then the simultation takes around 2~3 hours

Sled test

- Here also, location and stresses from pitch&roll or positioning phase are automatically introduced
 - It reproduces the stresses the real seat and dummy(ies) would get during a real experiment
- Two possibilities to generate the sled test pulse
 - Regulatory pulse: directly coded in the process
 - Part 23: Horizontal/Vertical, Crew/Passenger
 - Part 25: Horizontal/Vertical
 - Part27/29: Horizontal/Vertical

Horizontal Vertical Horizontal Vertical Crew Crew Passenger Passenger Part 23 26G, 100ms 19G, 100ms 21G, 120ms 15G, 120ms 16G, 180ms 14G, 160ms Part 25 Part 27/29 18.4G, 142ms 30G, 062ms

- User-defined pulse (to reproduce and existing sled test): through the data file, directly read by the process
- Different orientations
 - Frontal, Aft, Pitch 60°
 - Automatic introduction of a yaw in the sled test, if any

Automatic generation process How it works

- You bring your seat, we bring our belted dummy
 - The process combines them and creates and creates the corresponding solver input
- Preview function makes it safer
 - It becomes possible to see in the pre-processing phase, i.e.
 before running the solver what will happen during the simulation
 - Pitch&Roll: movement of the tools defining the pitch and the roll of the seat tracks
 - Sled test: direction of the dummy movement (e.g. to avoid the dummy to go forward in an aft test)
- Parameterization is easy
 - Through simple parameters files
- It is possible to chain the phases
 - Like this you launch the process in the evening and you get the sled test results in the morning
 - The Three phases (positioning, pitch&roll, sled test) are automatically chained)

VIRTUAL SEAT PROTOTYPING VIRTUAL PERFORMANCE

Safety

8

item	S&G phase, magnitude, comprehensive error	Allowable S&G Comp. error	Peak Difference	Allowable Peak Difference
Lf Lap Belt F	0.072, -0.007, 0.073	0.1	6.397%	10%
Rt Lap Belt F	0.072, 0.018, 0.074	0.1	1.631%	10%
Head CG X pos.	0.006, 0.047, 0.047	0.1	34.889	12.7mm
Head CG Z pos.	0.03, 0.015, 0.034	0.1		
Knee X pos.	0.022, -0.006, 0.023	0.1	14.686	6.35mm
Knee Z pos.	0.056, -0.007, 0.056	0.1		
Ankle X pos.	0.02, 0.005, 0.021	0.15		
Ankle Z pos.	0.039, -0.024, 0.046	0.2		
H-Point X pos.	0.023, 0.011, 0.026	0.1	6.114	6.35mm
H-point Z pos.	0.051, -0.081, 0.096	0.1	38.679	5.1mm

Lap belt Pitch 0°

Allowable

Peak Difference

10%

5mm

3deg

Allowable

error

0.15

0.25

0.1

0.35

0.25

0.40

S&G Comp. Peak Difference

4.465%

0.991

2.701

Lap belt Pitch 60°

item

Lumbar Fz

Lumbar My

H-point Z pos.

Pelvis angle

Head CG X pos. 0.007, 0.031, 0.032

Head CG Z pos. 0.003, 0.019, 0.019

S&G phase,

magnitude,

comprehensive error

0.163, -0.178, 0.242

0.203, -0.1, 0.226

0.007, 0.016, 0.017

0.243, -0.099, 0.262

VIRTUAL SEAT PROTOTYPING VIRTUAL PERFORMANCE Safety

item	S&G phase, magnitude, comprehensive error	Allowable S&G Comp. error	Peak Difference	Allowable Peak Difference
chest Ax	0.046, 0.108, 0.117	0.1	7.837%	10%
Lf Lap Belt F	0.032, -0.049, 0.058	0.1	0.256%	10%
Rt Lap Belt F	0.031, 0.007, 0.032	0.1	3.395%	10%
Shoulder Belt F	0.06, -0.092, 0.11	0.1	2.241%	10%
Head CG X pos.	0.037, -0.086, 0.094	0.1	38.308	44.5mm
Head CG Z pos.	0.014, 0.013, 0.019	0.3		
H-Point X pos.	0.023, -0.104, 0.107	0.2	19.492	31.8mm
shoulder pos x	0.053, -0.235, 0.241	0.15	92.637	50.8mm
shoulder pos z	0.009, -0.026, 0.028	0.4		

www.esi-group.com

VIRTUAL SEAT PROTOTYPING VIRTUAL PERFORMANCE Safety

Harness Pitch 0°

item	S&G phase, magnitude, comprehensive error	Allowable S&G Comp. error	Peak Difference	Allowable Peak Difference
chest Ax	0.103, 0.061, 0.12	0.15	15.483%	20%
Lf Lap Belt F	0.075, -0.022, 0.078	0.1	4.548%	10%
Rt Lap Belt F	0.076, 0.019, 0.078	0.1	13.391%	10%
Shoulder Belt F	0.1, -0.063, 0.118	0.15	11.168%	15%
Shoulder Belt F	0.093, -0.04, 0.101	0.15	10.444%	15%
Head CG X pos.	0.05, -0.065, 0.082	0.1	45.868	38.1mm
Head CG Z pos.	0.011, 0.032, 0.034	0.2	15.405	25.4mm
H-Point X pos.	0.007, 0.041, 0.042	0.25	7.742	31.8mm
Knee X pos.	0.01, -0.046, 0.047	0.25	43.35	31.8mm
Knee Z pos.	0.026, 0.28, 0.281	0.6		
shoulder pos x	0.046, -0.179, 0.185	0.2	57.033	31.8mm
shoulder pos z	0.014, 0.004, 0.014	1.0	9.072	44.5mm

End-to-end virtual prototyping for seats

MULTI-DOMAIN OPTIMIZATION

www.esi-group.com

Copyright © ESI Group, 2012. All rights reserved. 12

VIRTUAL SEAT PROTOTYPING HOW TO ACHIEVE THIS GOAL ?

What does ESI propose ? Virtual Performances

NVH

Comfort

Thermal

comfort

13

www.esi-group.com

and an end-to-end solution

COMFORT Pressure distribution

www.esi-group.com

COMFORT Pressure distribution

Courtesy Hyundai

Courtesy Renault

Fig. 1: Experimental set-up

Nominal foam	Experi- ment	Simulation	Difference	Difference %
F _{Gmax}	7.0 Hz	7.0 Hz	0.01 Hz (± 0.2)*	+0.1% (± 3%)*
G _{max}	6.7	7.1	0.5 (± 0.5)*	+7% (± 10%)*
F _{G=1}	10.4 Hz	10.4 Hz	0.01 Hz (± 0.2)*	+0.1% (± 2%)*
G _{f=10Hz}	1.13	1.12	-0.01 (± 0.1)*	-1% (± 10%)*

* criteria of acceptance of the results

This good correlation between simulations and tests confirms the ability to assess the riding seat comfort in a full virtual process.

Ex. Renault: « Virtual Seat Comfort Assessment for Low-Frequency Ride Comfort », SIA 2008

VIBRATIONS

www.esi-group.com

THERMAL COMFORT

The oscillations on the experimental curve are due to the thermostat.

The seat is initialized at 22°C

End-to-end virtual prototyping for seats

FINALLY

With the same model, you can achieve many analysis

- First step toward the multi-domain optimization
- Less expensive: same software & hardware
- You can easily perform safety analysis
 - You bring your seat model, we bring the dummy and the process
 - We have automatic converters for Nastran, LS-Dyna and RADIOSS
 - Lowers the risk of mistakes

