Los Angeles ACO Experience

Use of Dynamic
Analysis Methods For
Aircraft Seat
Certification

Presented to:

By: Patrick T. Farina, P.E.

Date: 07 – 08 August 2012

Benefit

- Two seat design companies have tested the waters within the past 2 years
- Desired benefit
 - Shorten development time
 - Reduce number of costly development tests
 - Ability to down select and optimize new designs

Time Issue

Both companies typically create derivative seats

- Built in ability to create new seat configurations for delivery in as little as 3 months
- Modeling current seat design requires long lead time.
- Unwillingness to hire/create new modeling team
 - Initial start-up cost to create data base of previous designs
 - Manpower cost for dedicated engineering team

Hurdles

Need design to be CAD/CAE

- Ideal is to build design and model at same time
- Reality is to model what you have

Validation of Model

- Ability to take past dynamic data to use in validation
 - Interest has come from newer entrants into seat design rather than from the established seat designers.
 - Established seat manufacturers have more data that could be used to establish a model base.
 - Were there enough measurements and loads acquired to accurately model?

Hurdles

Validation of Model (cont)

- Revalidation when design is not a derivative or novel design is implemented
 - Seat Pan: Metallic, Honeycomb and Dymetrol
 - Beams: Nested tube vs single variable wall tube
 - Floor seat track to floor and wall mounted seat tracks

ACO Challenge

- Branch does not have experience in this area
- Not conversant with the industry recommended practice, ARP 5765
- Not conversant with the FAA AC 20-146

Thought to Ponder – Failure

Case study

- Applicant had previously tested this seat and passed with no issues
- FAA shows up to observe for credit test.
 - Would the model have been able to predict this failure?