

Validation of Thermal Loads for Hybrid Structure

Composite Transport Damage Tolerance and Maintenance Workshop, Montreal September 2015

Jean-Philippe Marouzé Product Development Manager Bombardier Aerostructures & Engineering Services

Validation of Thermal Loads for Hybrid Structure

- CSeries Aft Fuselage overview
- Thermal stress methodology definition/validation
- Level 0: CTE validation
- Level 1: Strain compatibility
- Level 2: Flat panels
- Level 3: Barrels
- Level 4: Full Scale
- Sizing Methodology
- Fatigue aspect
- Conclusion

CSeries Aft Fuselage structure/material overview

Maximise product benefit and minimize recurring cost with a smart material and process choice, robust design and advanced analysis:

- Automated processes
- Integrated composite parts
- Aluminum frames and longerons
- Minimise use of titanium (3 % in structural weight)
- Robust and Damage tolerant composite structures
- Strong test validated stress methodologies

Composite Transport Damage Tolerance and Maintenance Workshop, Montreal September 2015

Thermal stress methodology definition/validation

Thermal stress methodology follow a building block approach with emphasis on understanding load and structure behavior rather than relying on a detail FEM for overall structure sizing (static and fatigue).

Analysis Method

4

PRIVATE AND CONFIDENTIAL er Inc. or its subsidiaries. All rights reserved

Bombardier Inc. or its subsidiaries

 \odot

5

Level 0: CTE validation

- CTE values, α_{11} and α_{22} , of the combined fiber and matrix at the *lamina* level
- Lamina CTE values are then applied to a laminate stacking sequence (LSS) at the laminate level
- Expected CTE fluctuation attributed to AFP process features included
- Effect of thermal cycle on micro-crack and CTE is assessed for fatigue and damage tolerance analysis on composite and aluminum structure
- Extreme and typical thermal fatigue envelope evaluated

Level 1: Strain compatibility equations

- the CTE mismatch between a common strain gauge and the bonded material will produce erroneous strain results
- Self-Temperature Compensating (STC) gauges for both the Aluminum and Carbon Fiber/Epoxy materials with an appropriate STC number based on their respective CTE values
- A residual error will still be present despite using this method
- Additional test specimens done to subtract the error from the STC gauge measurements

Composite Transport Damage Tolerance and Maintenance Workshop, Montreal September 2015

Level 2: Flat panel convergence models

- Correlate the thermal FEM results at 6 temperatures: 60°C, 45°C, -20°C, -30°C, -40°C and -50°C
- Replicate the production stringer-to-frame connection and frame cutout configurations
- Observe impact of liquid shim and faying surface sealant
- Mitigate risk & serve as a knowledge base prior to the Aft-Fuse Demonstrator test

Level 2: Flat panel convergence models

GFEM vs. DFEM

- DFEM correlates frame stresses within less than 10%
- Define reasonable GFEM modification to capture skin / frame load distribution
- Observe and validate effect of:
 - Fastener flexibility
 - Frame cut-out

Level 3: Barrel convergence models

Flat panels conclusion is not valid for closed section structure and shall be investigated especially for a non-circular fuselage shape.

Design features are also investigated:

Level 4 Aft Fuselage Global FEM

The following shapes were explored for use in the test plan to substantiate the results and recommendations from the thermal stress FEM convergence analysis:

- Open Shapes
 - Flat Panels
 - Curved Panels
- Closed Shapes
 - Cylindrical Shape
 - Box Shape

10

As explained, out of plane capability and boundaries have a significant impact on thermal induced stress. To validate our approach, a production representative test shall be used The production demonstrator is ideal candidate to validate methodology.

All rights reserved

Composite Transport Damage Tolerance and Maintenance Workshop, Montreal September 2015

Full Scale Test Correlation

Objectives

- Correlate Thermal FEM with physical datas
- Examine fasteners hole clearance on a full scale
- Evaluate the influence of crossing thermal load paths
- Verify predictions of distribution at key locations on Aft Fuse Demonstrator for application to skin and frame sizing
- Assess risks taken during component sizing by examining additional locations on aluminum structures
- Investigate several temperature range: 75°C, 60°C, 45°C, -20°C, -30°C, -40°C and -50°C

Full Scale Test Correlation: Longeron

GFEM demonstrated a good prediction continuous aluminum elements

All rights reserved.

Bombardier Inc.

 \odot

Full Scale Test Correlation – Skin Fyy Distributions

Full Scale Test Correlation – Bearing / By-pass

Develop design rules and factor from DFEM (validated by test) apply to GFEM loads

Sizing methodology for production aircraft Stage 1: Analytical tools

VSTAB inner & outer cap locations

Sizing methodology for production aircraft Stage 2: Global FEM (Flight and Thermal)

Global FEM is used to extract load for structure sizing (composite and metallic). Knockdown factor to take into account frame cut-out are used and validated by test evidence.

Sizing methodology for production aircraft Stage 3: Detail FEM (Flight and Thermal)

Detail FEM is used for specific region detail analysis (V-Stab fittings, Mid/Aft joint, highly loaded cut-out). This model use previous leanings and is validated.

Composite Transport Damage Tolerance and Maintenance Workshop, Montreal September 2015

Sizing methodology for production aircraft **Stage 4: High Detail FEM (Flight and Thermal)**

High definition FEM are used on complex load interaction area associated to complex failure mode (first stage is still classical analysis):

- Stringer run-out (3D modelling and VCCT analysis) 1.
- 2. Vertical Stabilizer fittings
- 3. Skin / Stringer interface

Composite Transport Damage Tolerance and Maintenance Workshop, Montreal September 2015

BOMBARDIER the evolution of mobility

Composite Transport Damage Tolerance and Maintenance Workshop, Montreal September 2015

Conclusions

Thermo-mechanical cycling effect on basic structural allowable can be complex and highly dependent on resin system. A sizing process supported validated by test is proposed.

•An improved FEM predict flight and thermal load associated to a standard sizing process using test validated factor for design features.

A Detail FEM correlated on full scale test article for flight and thermal load allow critical location analysis.
Component full-scale thermal and flight fatigue test ensure complete validation.

- High ratio of thermal to mechanical internal loads and resulting complex interaction of failure modes, required analysis validation at full scale, large sub-component test
- o Residual strength validation after cycling at critical temperature (composite & metallic structure)

BOMBARDIER the evolution of mobility