

Rear Pressure Bulkhead: Large Damage Capability Demonstration

Composite Transport Damage Tolerance and Maintenance Workshop, Montreal September 2015

Jean-Philippe Marouzé Product Development Manager Bombardier Aerostructures & Engineering Services

PRIVATE AND CONFIDENTIAL Bombardier Inc. or its subsidiaries. All rights reserved.

CSeries RPB: Design overview

RPB is a fiber placed tear strap design with an objective of large damage capability as per design principle.

CSeries RPB: Advanced Process

Automated processes brings repeatable optimized part and quality

Composite Transport Damage Tolerance and Maintenance Workshop, Montreal September 2015

CSeries RPB: Tear Strap design

Strap are used to demonstrate residual strength capability (orange curve) Mar-Lin curve associated to a Point-Stress approach with non-linear FEM for final analysis.

4

CSeries RPB: Tear Strap design

Intensive bibliography studies performed to defined preliminary and detail sizing of RPB. BA worked with NSE Composites

CSeries RPB: Level 2 un-configured

There is a benefit on residual strength capability with notch of using AFP process rather than hand lay-up validated with small notches (up to 4 inches)

Final production lay-up and off-axis notch / load need to be validated by tests.

Effect of overlap and gap density on notch capability is validated by tests.

CSeries RPB: Level 3 Tear Strap Test

7

CSeries RPB: Level 3 Tear Strap Test

PRIVATE AND CONFIDENTIAL © Bombardier Inc. or its subsidiaries. All rights reserved.

Methodology show conservatism but removing it on a RPB shall be done also with other design consideration including inherent robustness criteria and fire resistance.

CSeries RPB: Level 4 Pressurized Bulkhead

CSeries RPB: Level 4 Pressurized Bulkhead – Pre-Production

12 inch notch on the side of RPB (critical area) and in the middle

o

© Bombardier Inc.

CSeries RPB: Level 4 Pressurized Bulkhead – Pre-Production Test to failure

Similar failure mode on un-configured plate

Conclusion

RPB is designed as a large damage capable structure demonstrating product robustness associated to a complex damage scenario for this critical part.

Large Damage Capability is also applied to other primary structure (skin/stringers) on Aft Fuselage

Methodology demonstrate conservative approach but interaction with other design criteria shall be considered (fire, robustness, bearing/by-pass).

Nevertheless, improving our simulation capabilities for complex failure mode like notch is future interest:

- Inter-action between stiffening ratio/lay-up and propagation
- Softening law
- Progressive Failure Analysis

Objective is to maximise simulation validated by coupons tests rather larger complex one

Composite Transport Damage Tolerance and Maintenance Workshop, Montreal September 2015

BOMBARDIER the evolution of mobility