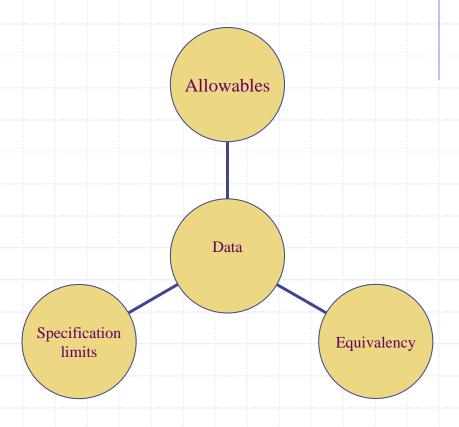
Testing for Equivalence

Purpose of Equivalence CMH17 Statistical Analysis Methods

September 14-16, 2010


Purpose of Equivalence

- To demonstrate material equivalency: to assure that "minor" changes to the material and/or process do not adversely affect material properties. Recommended alpha = 5%, n ≥ 8
 - Examples: New part fabricator, new resin mixer, new prepreg line, new raw ingredient supplier, etc.
- To establish specification limits: To avoid using material specification limits that are based on application requirement (performance-based specification) or other arbitrary methods that are not based on actual material property or statistics. Recommended alpha = 1%, n=5.
- To avoid using A-basis and B-basis values as material specification limits – basis values have no statistical relationship to quality control
- Published in DOT/FAA/AR-03/19 and MIL-HDBK-17-1F section 8.4.1

Linkage Between Allowables, Equivalency, and Specification Limits

The same dataset is used to derive basis values, equivalency limits, and specification limits (i.e. common mean and standard deviation).

 Equivalency and quality control tests are designed to protect material allowables.

Specification Development Guidelines

- DOT/FAA/AR-07/3 Guidelines and Recommended Criteria for the Development of a Material Specification for Carbon Fiber/Epoxy Unidirectional Prepregs Update
- DOT/FAA/AR-06/10 Guidelines and Recommended Criteria for the Development of a Material Specification for Carbon Fiber/Epoxy Fabric Prepregs
- DOT/FAA/AR-02/110 Guidelines for the Development of Process Specifications, Instructions, and Controls for the Fabrication of Fiber-Reinforced Polymer Composites

Sample Equivalency Test Matrix

Layup	Test Type and Direction	Property	Number of Batches xNumber of Panels x Numberof Test SpecimensTest Temperature/MoistureConditionCTDRTDETDETW				
[0] _{4S}	ASTM D3039 Warp Tension	Strength + Modulus	1x2x4	1x2x4		1x2x4	
[0] _{4S}	ASTM D6641 Warp Compression	Strength + Modulus		1x2x4		1x2x4	
[90] _{4S}	ASTM D3039 Fill Tension	Strength + Modulus	1x2x4	1x2x4		1x2x4	
[90] _{4S}	ASTM D6641 Fill Compression	Strength + Modulus		1x2x4	1x2x4	1x2x4	
[45/-45] ₂₈	ASTM D3518 In-Plane Shear	Strength + Modulus	1x2x4	1x2x4		1x2x4	
[0] ₁₇	ASTM D2344 Short Beam Strength	Strength		1x2x4		1x2x4	
(25/50/25 - QI) [45/0/-45/90] _s	ASTM D5766 Open Hole Tension	Strength	1x2x4	1x2x4		1x2x4	
(25/50/25 - QI) [45/0/-45/90/- 45/90] _S	ASTM D6484 Open Hole Compression	Strength		1x2x4		1x1x4	
(25/50/25 - QI) [45/0/-45/90/- 45/90] _S	ASTM D7136 & D7137 Compression after impact 1500 in-lbs/in	Strength		1x1x6			

Equivalency Testing

Testing is not as extensive as that needed to set basis values, so fewer tests are run at fewer environmental conditions and fewer specimens/batches are required.

Test matrix must specify which tests will be performed and under what environmental conditions; must be decided based on the purpose of the equivalency

The stakeholders must agree on the test matrix specifying exactly what tests will be done at what environmental conditions and how many specimens from how many batches.

Statistical Terminology

Hypothesis Testing

Type I and Type II errors

Test Statistics

Coefficient of Variation (CoV)

Hypothesis Testing

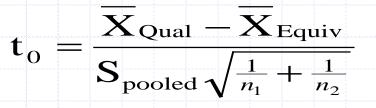
- We check each characteristic tested but what constitutes a 'failure' depends on what is being tested.
 - For Strength values, the test statistics are only concerned if they are lower than the original qualification material (although significantly higher values could be undesirable). We test both the sample mean and the sample minimum individuals against thresholds computed from the qualification sample.
 - For Modulus values, a failure occurs if the equivalence sample mean is either too high or too low. An acceptable interval is computed from the qualification sample.

Hypothesis Testing

Null Hypothesis: (H₀)

 No Difference. There are no significant differences between the two materials on the characteristic being tested

Alternate Hypothesis (H₁)


The two materials are different with respect to the characteristic tested

The null hypothesis is assumed true and we examine our sample data to see if it is consistent with this assumption. If not, we reject the null hypothesis and the equivalence sample fails that test.

Type I and Type II Errors

	Conclude that material is equivalent	Conclude that material is not equivalent Type I Error (α) wrongly assume material is not equivalent.		
Material is equivalent	No Error			
Material is not equivalent	Type II Error (β) Wrongly assume material is equivalent	NoError		

Test Statistic for Modulus

- This statistic is compared to the critical value of the tdistribution with the appropriate degrees of freedom at the 95% confidence level for equivalence testing and at the 99% confidence level for acceptance testing.
- If the t-statistic is larger than the critical value, the null hypothesis of equality is rejected and the material fails the equivalence test.

Test Statistics for Strength

- Failure for decrease in mean or minimum individual
 - Failure for decrease in mean

 $\mathbf{W}_{\text{mean}} = \overline{x} - \mathbf{k}_{n}^{\text{mean}} \cdot \mathbf{S}$

- Failure for decrease in minimum individual $W_{\min indiv} = \overline{x} - k_n^{\min indiv} \cdot S$
- If the equivalence sample fails either of these two comparisons, it fails the test.
- The k_n are found in DOT/FAA/AR-03/19 tables 20 and 21.
- If the two materials are equivalent, the probability of failing either one or both of the tests is **a**.

Co-efficient of Variation

The Co-efficient of Variation (CoV) is the standard deviation divided by the mean.

$$CoV = \frac{S}{\overline{x}}$$

 If CoV is <u>erroneously</u> high – we will accept too many "bad" materials

 If CoV is <u>erroneously</u> low – we will reject too many "good" materials

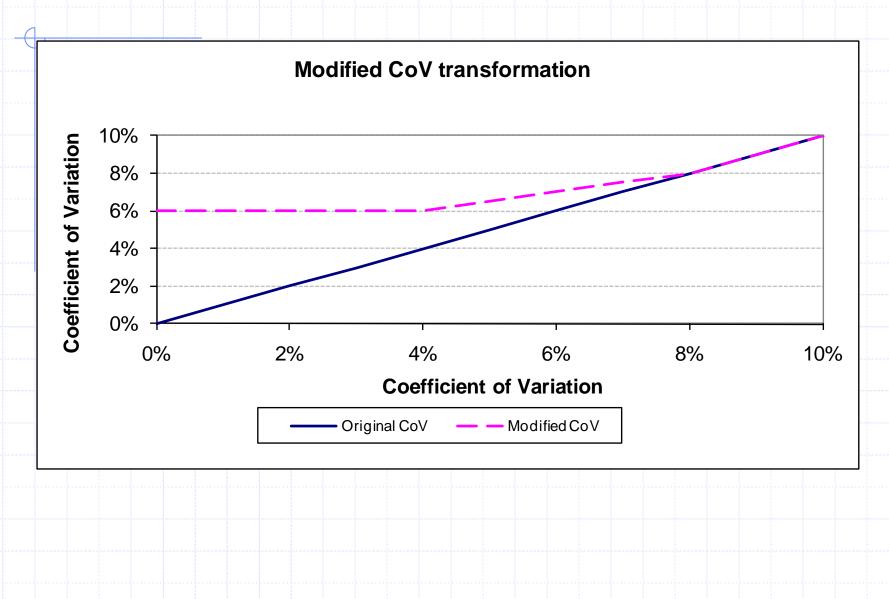
Modified CoV Approach

Original material qualification or allowables program often fail to capture the true material property variability. The "as-measured" CoVs are often lower than actual CoV.

Modified CoV adjusts the CoV higher for a temporary period of time to account of variability not captured in the original program.

- Modified CoV might make basis values lower
- Modified CoV also might make material equivalency/acceptance limits lower

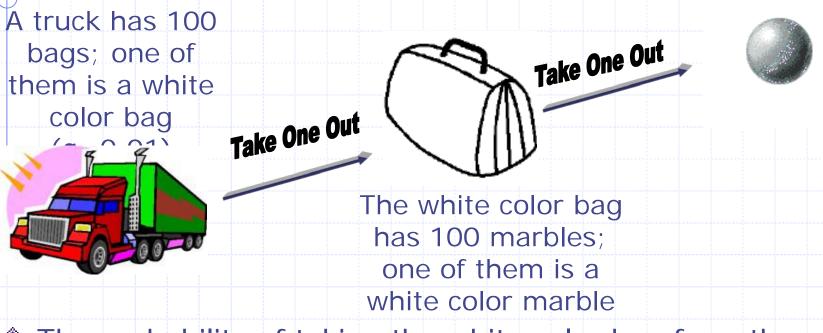
If Modified CoV is used for equivalency or material acceptance, it must also be used for the calculation of material allowables.


Effects of Modified CoV (in statistical point of view only)

In order to compensate for the additional variation (not present in the current dataset), the CoV is increased PRIOR to computing the A and B basis values.

The effect of this will be:

- Slight decrease in the computed A-basis and Bbasis values
- Slight decrease in the number of failures during equivalence or acceptance testing.


Graph of Modified CoV

CoV Modification Rules

- If as-measured CoV < 4%:</p>
 - Modified CoV = 6%
- If as-measured CoV is between 4% and 8%, adjust upward according to the following formula:
 - Modified $CoV = \frac{1}{2}$ as-measured CoV + 4%
- If as-measured CoV is between 8% and 10%:
 - Modified CoV = as-measured CoV
- ♦ If as-measured CoV > 10%:
 - Modified CoV = 10% for equivalency & acceptance purposes
 - Use as-measured CoV for calculating basis values

What Happens to α During a Retest

The probability of taking the white color bag from the truck and taking the white color marble from the white color bag is 0.0001 (Multiplication Rule).

♦ For initial a=0.01, retest a=0.01*0.01=0.0001=0.01%

♦ For initial a=0.05, retest a=0.05*0.05=0.0025=0.25%

Decision Making Process

We cannot expect zero failures even when the two materials are identical. The probability of 1 or more failures is computed using the binomial distribution.

Example1 : The probability of 0 failures in 25 tests when the samples actually are equivalent is .95²⁵ = .2775. The probability of 1 or more failures due to chance alone is the complement:

1 - .2774 = .7226

Example 2: A recent equivalence comparison was done with 78 separate tests; if the two materials are equivalent, the probability of 0 failures due would be .95⁷⁸ = 0.0183. Thus, the probability of 1 or more failures is:

1 - .0183 = .9817

Decision Making Process

How do we decide whether or not a material is equivalent if we expect some failures? How many is too many?

- Currently there is no firm cut-off point. All failures must be investigated as to the cause and engineering judgment used to make the determination.
- Determination should be based on the number of failures as well as the severity of each failure.

Engineering Judgment Guidelines

If there are only a few failures, then retests can be done. If the material passes the retest, we can presume the failure was due to random chance rather than a true material difference.

If the pattern of test results show a consistent problem – i.e. retests show the same problem or the failures consistently occur for the same characteristic, then the material is NOT equivalent.

Example: retests needed

NCAMP: Equivalenc Results	y Test			Test	Туре	Environ -ment	Results
Test	Test Type ment		Results		Strength	RTD	Pass
	Strength	CTD	Pass	Warp Compression	Strength	ETW (200)	Fail
Warp Tonsion	Strength	RTD	Pass			RTD	Pass
Warp Tension	Modulus	CTD RTD	Pass Fail		Modulus	ETW (200)	Pass
		CTD				RTD	Pass
Fill Tension	Strength	RTD	Pass Pass	Short Beam Shear	Strength	ETW (200)	Pass
		ETW (200)	Pass		0.2% Strength	RTD	Pass
	Modulus	CTD	Pass (mod CV)			CTD	Pass
		RTD	Pass	In Plane Shear	5% Strength	RTD	Pass
		ETW (200)	Pass			CTD	Pass
Fill Compression	Strength ETD ETW (RTD	Pass		Modulus	RTD	Fail
		ETD	Pass (mod CV)			CTD	Pass (mod CV)
		ETW (200)	Pass		Strength	RTD	Pass
	Modulus	RTD ETD	Pass Pass	Open Hole Compression		ETW (200)	Pass
		ETW (200)	Pass		Ctronoth	RTD	Pass
				Open Hole Tension	Strength	CTD	Pass

Example: Fails equivalency

NCAMP: Equivalency Test Results

Test	Туре	Environment		Alt Cure Cycle	Alt Cure Cycle - Modified CoV
		RTD	Mean	FAILS EQUIVALENCY	FAILS EQUIVALENCY
			Minimum	FAILS EQUIVALENCY	PASSES EQUIVALENCY
	Strength	ETW (200)	Mean	FAILS EQUIVALENCY	FAILS EQUIVALENCY
			Minimum	FAILS EQUIVALENCY	FAILS EQUIVALENCY
		ETW (250)	Mean	FAILS EQUIVALENCY	FAILS EQUIVALENCY
Warp Compression			Minimum	FAILS EQUIVALENCY	FAILS EQUIVALENCY
		RTD ETW (200)		FAILS EQUIVALENCY	PASSES EQUIVALENCY
	Modulus			PASSES EQUIVALENCY	PASSES EQUIVALENCY
		ETW (250)	-	PASSES EQUIVALENCY	PASSES EQUIVALENCY

HYTEQ

Hypothesis Testing of Equivalence NCAMP is introducing this new spreadsheet. It is a template for EXCEL that allows users to input the statistics from each test for the equivalence and qualification samples and the program will compute whether they are equivalent on a test by test basis. Engineering judgment still required to determine whether the material passes or fails.

HYTEQ EXAMPLE

Warp Tension Strength & Modulus		Calculated C.V.					Modified CV			
CARBON FABRIC PREPREG	CTD 0° Tension		RTD 0° Tension		ETW 0° Tension (250° F)		CTD 0° Tension	RTD 0° Tension	ETW 0° Tension (250°F	
	мн	LH	МН	LH	МН	LH	Using Modified CV	Using Modified CV	Using Modified CV	
As Measured Mean Strength (ksi)	135.472	136.680	139.017	138.251	130.154	131.166	135.472	139.017	130.154	
Standard Deviation	7.3767	4.3200	7.2198	4.2141	3.5307	3.9332	9.1072	9.1706	7.8093	
Coefficient of Variation (CV)	5.4452	3.1607	5.1935	3.0482	2.7127	2.9986	6.7226	6.5967	6.0000	
Minimum	125.145	131.751	127.286	130.586	122.682	124.759				
Maximum	146.911	144.070	150.242	146.02	136.463	137.49				
Number of Specimens	19	8	20	8	21	15				
Pooled CV (see Note 2)	4.4	076	4.4	076	4.4	076				
Wmean for α =0.05	130	.4631	134.	1150	128.	3927	129.2881	132.7904	126.2577	
Mean Result for α =0.05	PASSES EC	UIVALENCY	PASSES EQ	UIVALENCY	PASSES EQ	UIVALENCY	PASSES EQUIVALENCY	PASSES EQUIVALENCY	PASSES EQUIVALENCY	
Wmin_indiv for α =0.05	115	5.555	119.524		119	.875	110.8823	114.2566	107.4178	
Min_indiv. Result for α =0.05	PASSES EQUIVALENCY		PASSES EQUIVALENCY PASSES EQUIVALENCY		PASSES EQUIVALENCY	PASSES EQUIVALENCY	PASSES EQUIVALENCY			
Wmean for α =0.01	128.789		132.477		127	.814	127.2216	130.7096	124.9770	
Mean Result for α =0.01	PASSES QC ACCEPTANCE TESTING				PASSES QC A	CCEPTANCE FING	PASSES QC ACCEPTANCE TESTING	PASSES QC ACCEPTANCE TESTING	PASSES QC ACCEPTANCE TESTING	
Wmin_indiv for α =0.01	111.753		115.803		118	165	106.1894	109.5310	103.6350	
Min_indiv. Result for α =0.01	PASSES QC ACCEPTANCE TESTING		PASSES QC ACCEPTANCE PASSES QC AC TESTING TESTI			PASSES QC ACCEPTANCE TESTING	PASSES QC ACCEPTANCE TESTING	PASSES QC ACCEPTANCE TESTING		
Explanation/Comments										