Composite Structure Engineering Safety Awareness Course

Module: Composite Materials Test Methods

Dr. Dan Adams

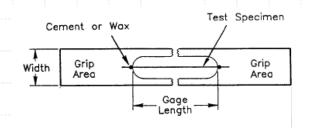
Director, Composite Mechanics Laboratory University of Utah Salt Lake City, UT 84112 (801) 585-9807 adams@mech.utah.edu

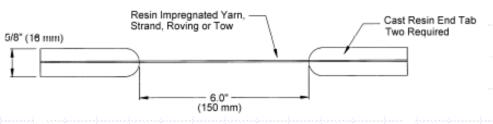
Composite Materials Test Methods

AGENDA

- Constituent and Prepreg Test Methods
- Physical Test Methods for Composites
- Mechanical Test Methods for Composites
- Adhesives Testing
- Test Methods for Sandwich Composites
- Non-Destructive Testing

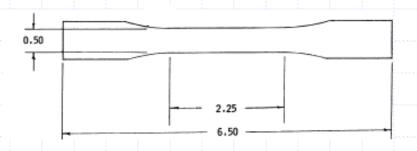
Constituent Test Methods


- Fibers: CMH-17 Vol. 1, Chapter 3
 - Physical testing Density, Thermal Properties
 - Mechanical testing –Tension
- ◆ Matrix: CMH-17 Vol. 1, Chapter 4
 - Thermal/Physical testing Density, Electrical Resistivity, Coefficient of Thermal Expansion
 - Mechanical testing –Tension, Compression,
 Shear


Fiber Characterization Testing: Examples

- Physical Testing: For constituent content (CMH-17 Vol. 1, Sections 3.3, 3.4)
 - Fiber diameter
 - Fiber density ASTM D 3800, liquid displacement
- Mechanical Testing

(CMH-17 Vol. 1, Section 3.5)


- Tensile properties
 - Single fiber tests ASTM D 3379
 - Tow tests ASTM D 4018

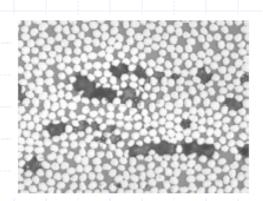
Matrix Characterization Testing: Examples

- Thermal Analysis (CMH-17 Vol. 1, Section 4.5)
 - Glass Transition Temperature, Tg
 - Thermal expansion properties
- Physical Testing (CMH-17 Vol. 1, Section 4.5)
 - Matrix density ASTM D 792 or D 1505
- Mechanical Testing (CMH-17 Vol. 1, Section 4.6)
 - Tensile properties ASTM D 638
 - Compression, shear, flexure

Prepreg Test Methods

- ◆ CMH-17 Vol. 1, Chapter 5
- Focus on properties and characteristics of uncured prepreg
 - Fiber and resin content
 - Resin extraction, ASTM C 613
 - Resin flow, gel time
 - Surface tack, drape

Composite Materials Test Methods

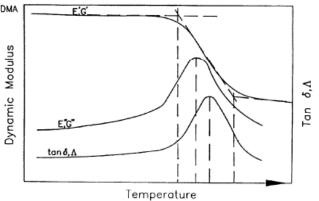

AGENDA

- Constituent and Prepreg Test Methods
- Physical Test Methods for Composites
 - Mechanical Test Methods for Composites
 - Adhesives Testing
 - Test Methods for Sandwich Composites
 - Non-Destructive Testing

Physical Test Methods for Composites

CMH-17 Vol. 1, Chapter 6

- Density ASTM D 792
- Constituent content (fiber, matrix, voids)
 - Matrix digestion ASTM D 3171
 - Ignition loss ASTM D 2584
 - Image analysis
- Flammability
- Thermal cycling/microcracking
- EMI shielding effectiveness



T_g Determination: Thermoset Composites

CMH-17 Vol. 1, Section 6.6.3

Glass Transition Temperature, T_g : A temperature-induced change in the matrix material from the glassy to the rubbery state during heating... A change in matrix stiffness of two or three orders of magnitude occurs during the glass transition"

- Dynamic Mechanical Analysis (DMA)
 - Most common method
 - Forced oscillation measurement
- ThermoMechanical Analysis (TMA)
 - Measure changes in thermal expansion
- Differential Scanning Calorimetry (DSC)
 - Measure change in heat capacity associated with T_g
 - Well suited for neat resin specimens, more difficult with composites

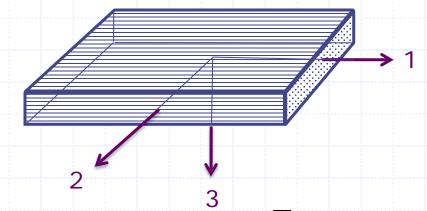
Composite Materials Test Methods

AGENDA

- Constituent and Prepreg Test Methods
- Physical Test Methods for Composites
- Mechanical Test Methods for Composites (CMH-17 Vol. 1, Chapter 6)
 - Adhesives Testing
 - Test Methods for Sandwich Composites
 - Non-Destructive Testing

Unique Aspects of Testing Composite Materials

- Orthotropy: different stiffnesses and strengths in different directions.
- Minimum thickness flat plates for testing
- Properties not always the same in tension and compression


Elastic Material Properties

Isotropic Materials (metals, plastics, ceramics, etc.)

E,
$$\nu$$
, G
But only two are independent: $G = \frac{E}{2(1+\nu)}$

Composite Lamina (layer, ply)

$$E_{1}$$
, E_{2} , E_{3}
 v_{12} , v_{13} , v_{23}
 G_{12} , G_{13} , G_{23}

Transverse Isotropy:
$$G_{12} = G_{13}$$

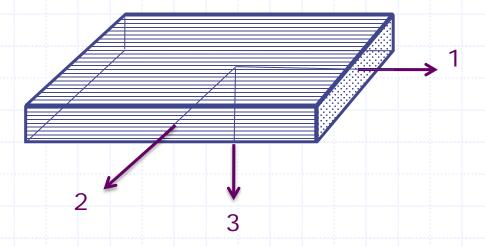
Example Isotropy:
$$E_2 = E_3$$

 $G_{12} = G_{13}$ $v_{12} = v_{13}$

$$G_{23} = \frac{E_2}{2(1+v_{23})}$$

Strength Properties of a Composite Material (Lamina)

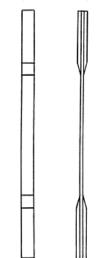
3 Axial Tensile Strengths

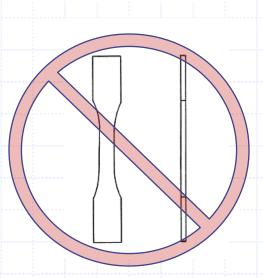

$$S_1^+$$
 , S_2^+ , S_3^+

• 3 Axial Compressive Strengths

$$S_1^-$$
, S_2^- , S_3^-

3 Shear Strengths


$$S_{12}$$
 , S_{13} , S_{23}



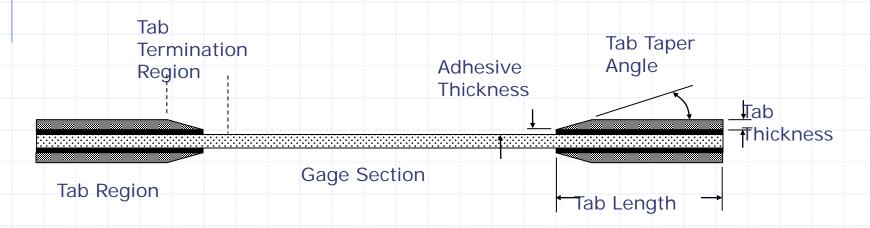
Transverse Isotropy: $S_2 = S_3$ $S_{12} = S_{13}$

Tension Test For Flat Specimens ASTM D 3039

- Straight-sided specimens
- ◆ 0.5 in. wide, ~ 8 in. long
- Adhesively bonded tabs
- Strain gages (or extensometer) to measure axial and transverse strain (for E, v₁₂)
- Requires valid gage section failure

Tabbing of Composite Tension Specimens: Design Variables

Tab Material


 G10 or G11 glass/epoxy circuit board material

Tab Geometric Design

- 0.04-0.08 in. thickness
- Between 5° and 30° taper angle

Adhesive Selection

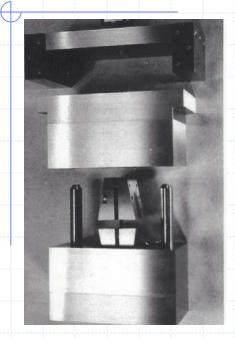
- High strength
- Thick bondline (0.010 to 0.050 in.)

Reference: Daniel O. Adams and Donald F. Adams, "Tabbing Guide for Composite Test Specimens," DOT/FAA/AR-02/106, October 2002. http://www.tc.faa.gov/its/worldpac/techrpt/ar02-106.pdf

Categories of Compression Testing

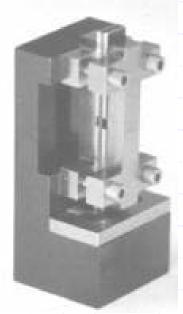
Shear loading methods

IITRI compression test (ASTM D 3410)


End loading methods

Modified ASTM D 695

Combined loading methods


Combined Loading Compression (CLC), ASTM D 6641

Common Compression Test Methods

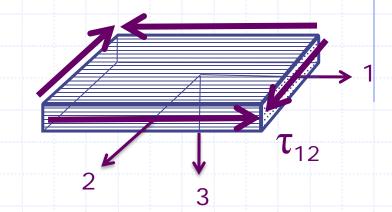
Shear loading ASTM D 3410

- 5.5 in. long specimen
- 0.5 in. gage length
- Versatile
- Heavy and expensive

End loading Modified ASTM D 695

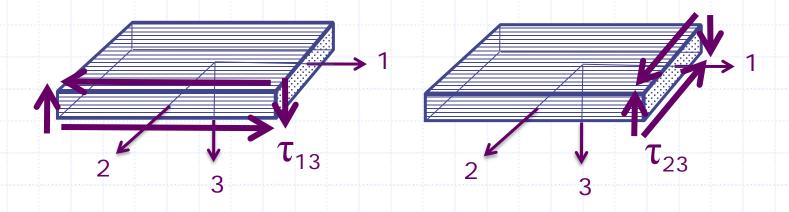
- •3.18 in. long specimen
- •0.188 in. gage length
- Separate tests for modulus (untabbed) and ratio via bolt torque strength (tabbed)

Fixture Bolts Alignment Bearings Specimen


Combined loading **ASTM D 6641**

- •5.5 in. long specimen
- 0.5 in. gage length
- Adjustable loading

Shear Testing – Flat Composite Plates

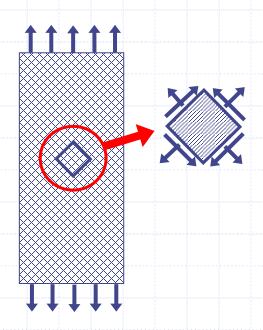

In-plane shear testing:

Stiffness: G₁₂ Strength: S₁₂

Out-of-plane (interlaminar) shear testing

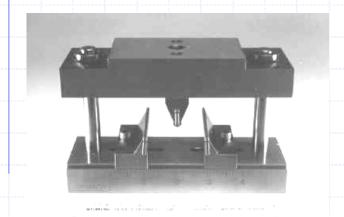
Stiffness: G₁₃, G₂₃
Strength: S₁₃, S₂₃

Common Test Methods: In-Plane Shear

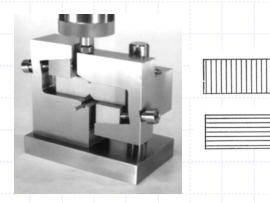


- 3 x 0.75 in. specimen
- Edge loaded

V-Notched Rail Shear ASTM D 7078


- •3 x 2.2 in. specimen
- Face loaded
- •Recommended by CMH-17

±45 Tension Shear ASTM D 3518


- Combined stress state (not pure shear)
- Easy to perform

Common Test Methods: Out-Of-Plane (Interlaminar) Shear

Short Beam Shear ASTM D 2344

- Shear strength only
- Combined stress state
- Small specimen
- •Simple and affordable test

Iosipescu Shear

ASTM D 5379

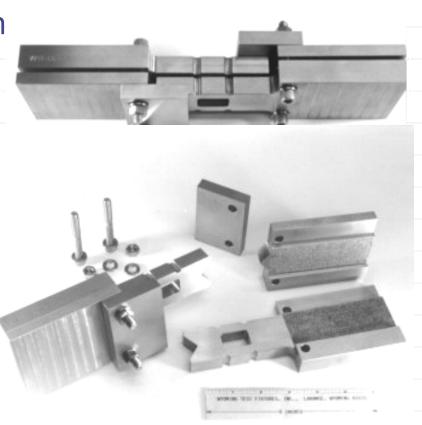
- •3 x 0.75 in. specimen
- Edge loaded
- Modulus and strength

Other Composite Material Test Methods

- "Notched" Laminate Testing CMH-17 Vol. 1, Section 7.4
- Bearing Testing CMH-17 Vol. 1, Section 7.5
- Compression After Impact Testing CMH-17 Vol. 1, Section 7.7
- Fracture Mechanics Testing CMH-17 Vol. 1, Section 6.8.6

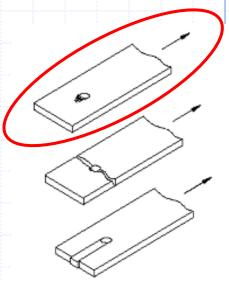
"Notched" Laminate Testing

- Laminate test, does not yield a material property
- "Notch" = hole
- Tested in tension or compression with or without a fastener ("open" or "filled")

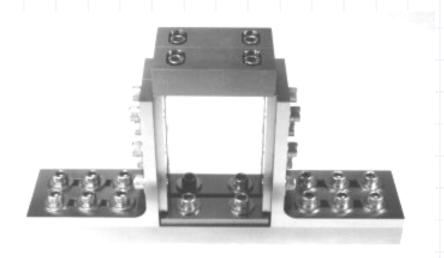

Open-hole tension Filled-hole tension
Open-hole compression Filled-hole compression

- Used to provide design values
 - Mechanically fastened joints
 - Effects of manufacturing anomalies and small damage areas
- Governed by ASTM standards (D 5766, D 6484)

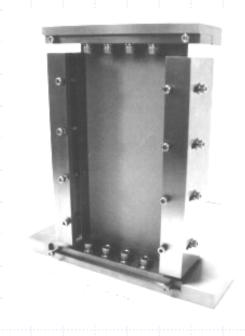
Example Notched Laminate Testing: Open Hole Compression Testing


ASTM D 6484

- 12" long x 1.5" wide specimen
- 0.25" diameter center hole
- Face supported
- Clamped in hydraulic grips or end loaded
- Staggered V-shaped joints in both sides of the fixture
- Guide plates to maintain alignment.



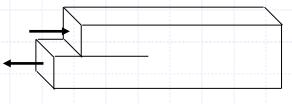
Bearing Testing


- Laminate test
- Utilizes specified bolted joint configuration
 - Single shear
 - One bolt
 - Two bolt
 - Double shear
- Used to compare materials and provide design values
 - Not meant to be representative of actual joint designs
 - Yield and ultimate bearing strength
 - Governed by ASTM D 5961

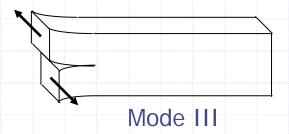
Compression Strength After Impact (CSAI)

ASTM D 7136 - Damage Resistance ASTM D 7137 - Damage Tolerance • 4 in. x 6 in. specimen

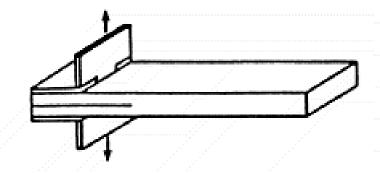
NASA CAI Test5 in. x 10 in.specimen


Fracture Mechanics Testing

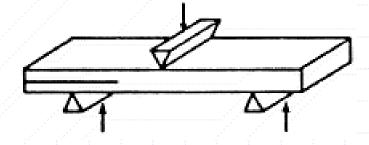
 Determine propagation characteristics of existing cracks/delaminations



- Mode I opening or extension
- •Mode II shear
- Mode III tearing or twist

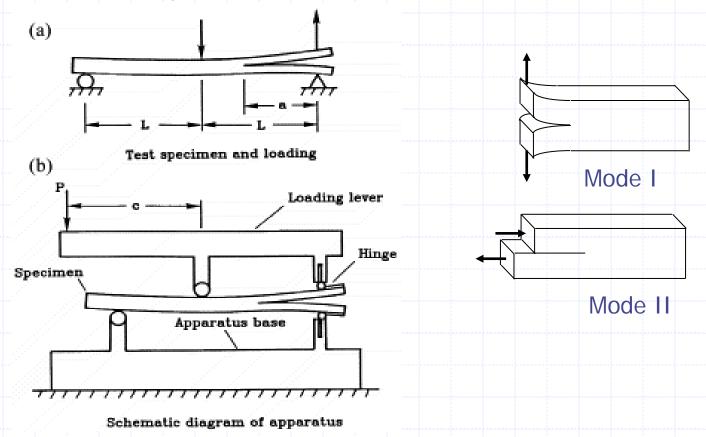

Mode II

Fracture Mechanics Test Methods


Mode I: ASTM D 5528

Double cantilever beam flexure test (tension)

Mode II: Currently no ASTM standard

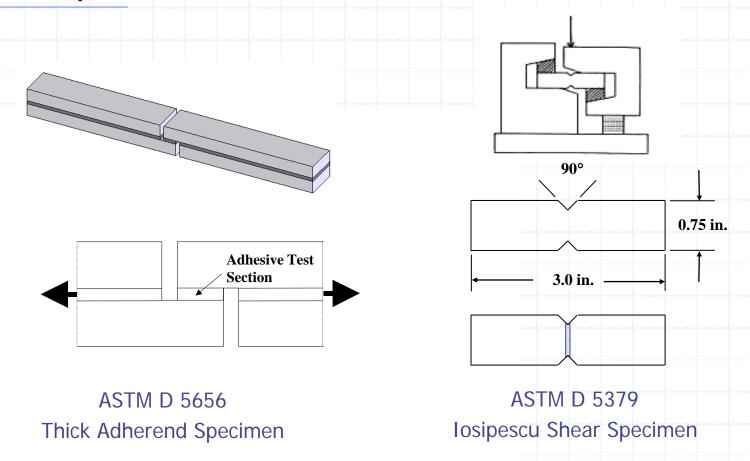

End-notched flexure test (shear)

Fracture Mechanics Test Methods

Mixed Mode (Mode I & II)

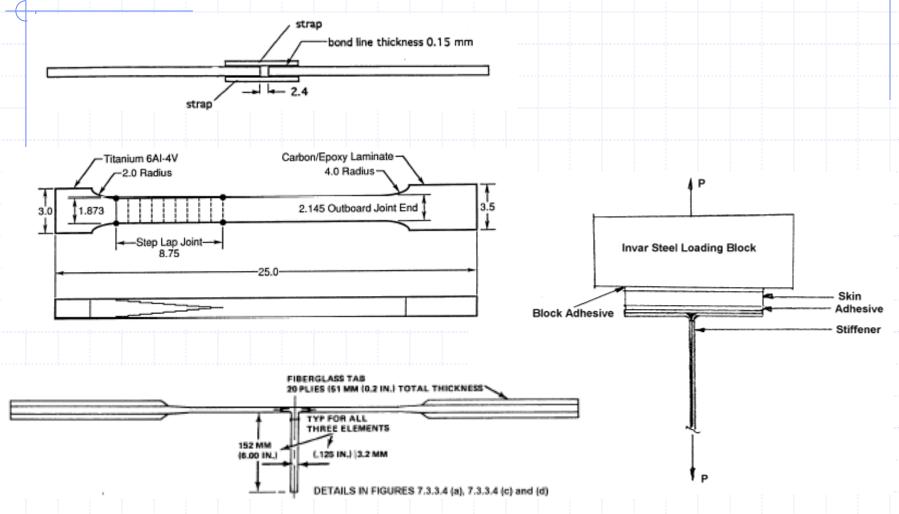
Mixed Mode Bending (MMB) Test, ASTM D 6671

Composite Materials Test Methods


AGENDA

- Constituent and Prepreg Test Methods
- Physical Test Methods for Composites
- Mechanical Test Methods for Composites
- Adhesives Testing (CMH-17 Vol. 1, Section 7.6)
 - Test Methods for Sandwich Composites
 - Non-Destructive Testing

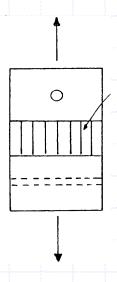
Categories of Adhesives Testing


- Adhesive characterization testing
 - Typically tensile and shear testing
 - Provides adhesive stiffness and strength data
 - Ultimate strength, initial tangent modulus
 - Stress versus strain curves
 - Used for design & analysis, comparisons
- Bonded joint characterization testing
 - Representative of actual joint to be used
 - Typically do not follow standardized test methods

Adhesive Characterization: Examples of Shear Test Methods

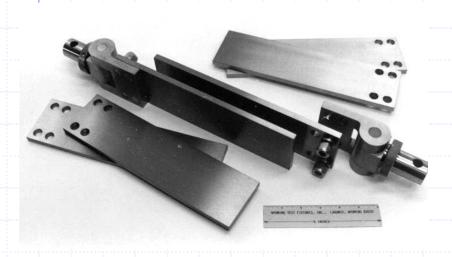
Reference: Nicholas Burst and Daniel O. Adams, "Investigating the Thin-Film Versus Bulk Material Properties of Structural Adhesives," DOT/FAA/AR-06/45, May 2008. http://www.tc.faa.gov/its/worldpac/techrpt/ar0645.pdf

Bonded Joint Characterization Testing


Composite Materials Test Methods

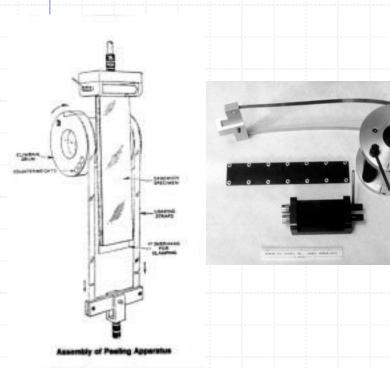
AGENDA

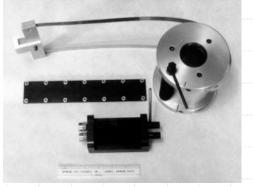
- Constituent and Prepreg Test Methods
- Physical Test Methods for Composites
- Mechanical Test Methods for Composites
- Adhesives Testing
- Test Methods for Sandwich Composites (CMH-17 Vol. 1, Section 6.8)
 - Non-Destructive Testing


Mechanical Test Methods for Sandwich Composites

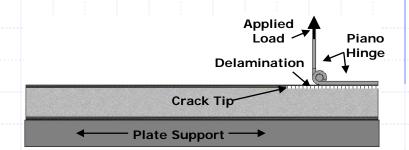
- ◆ Flatwise Tension ASTM C 297
- ◆ Flatwise Compression ASTM C 365
- Sandwich Panel Shear ASTM C 273
- Sandwich Panel Flexure ASTM C 393
- Climbing Drum Peel ASTM D 1781
- Fracture Mechanics Testing

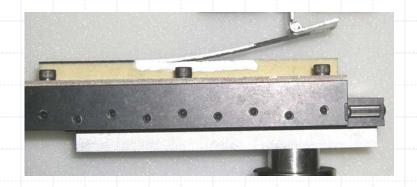
Sandwich Panel Shear Test ASTM C 273




Tension Loading




Compression Loading


Other Sandwich Panel Tests

Mode I Fracture Mechanics: Single Cantilever Beam) (Proposed ASTM standard)

Composite Materials Test Methods

AGENDA

- Constituent Test Methods
- Prepreg Test Methods
- Physical Test Methods for Composites
- Mechanical Test Methods for Composites
- Adhesives Testing
- Test Methods for Sandwich Composites

Why Non-Destructive Testing?

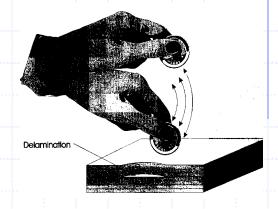
Also referred to as Non-Destructive Inspection (NDI) & Non-Destructive Evaluation (NDE)

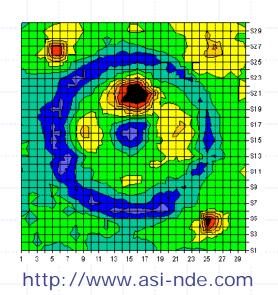
- Find defects/anomalies that may affect composite performance:
 - Inhomogeneities within the materials
 - Fiber breakage
 - Resin micro-cracking
 - Voids and porosity
 - Delaminations
 - Cure deficiencies

NDT vs. "Destructive" Testing

- Non-Destructive Testing (NDT) locates potential problem areas
- Destructive (mechanical) testing...
 - Required to define problem extent
 - Aided and minimized by analysis
 - Often both destructive testing and analysis are required

Typical NDT Techniques For Composites

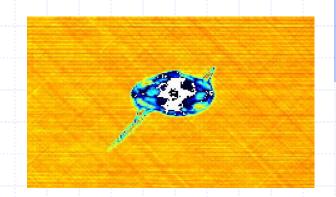

- Visual Inspection
- Tap Testing
- Ultrasonic Methods
- X-Ray
- Thermography
- Shearography

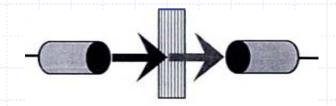

Visual Inspection

- Easiest system to use (eye, microscope)
- Can visually detect...
 - Surface damage (ex: abrasions, cuts, dents)
 - Blisters, bubbles on surface
 - Porosity, delaminations (inspection of edges)
- First line of investigation

Tap Testing

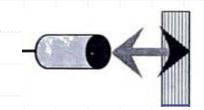
- Follow-on to visual inspection
- Based on ability to `hear' sound differences
- Effective in mapping delamination areas
- Used extensively because of ease and cost
- Computer-aided/electronic tap testers available for commercial usage




Ultrasonic Test Methods

Used to monitor for delaminations, voids/porosity, fiber/matrix damage

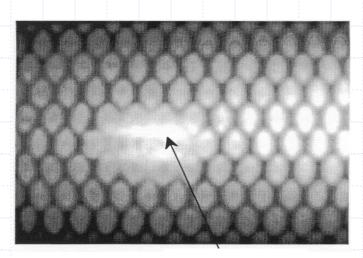
 Requires access to both sides of composite structure



Pulse echo

 Requires access from only one side of composite structure

More applicable to field inspections


X-Ray Inspection

- Detects density changes
- Well suited for bonded interfaces
- Can locate delaminations, voids, porosity, moisture, inclusions
- Technique in use many years (rocket motors, nozzles)

Thermography

- Uses heat transfer --- not sound waves
- Requires infrared video camera
- Measures effects from thermal changes
- Useful for locating delaminations and contamination (moisture, solvents)
- Potential field usage

Delamination

References: Composite Materials Test Methods

- CMH-17, Composite Materials Handbook, Volume 1
- "Experimental Characterization of Advanced Composite Materials," by Donald F. Adams, Leif A. Carlsson, and R. Byron Pipes, CRC Press.
- ASTM Annual Book of ASTM Standards, Volume 15.03, Space Simulation; Aerospace and Aircraft; Composite Materials
- ASTM D 4762, "Standard Guide for Testing Polymer Matrix Composite Materials"