Composite Structure Engineering Safety Awareness Course

Emerging Technologies and Special Processes

Larry Gintert

September 14-16, 2010

Agenda

 Emerging Technologies and Special Processes
 What are the implications of M&P Control for emerging technologies and special processes

New material forms and products

- Custom reinforcement forms (custom 2-D weave, 3-D weave, braid, pin or stitch)
- Unique sandwich core materials and/or configurations
- Special Processes
 - Liquid resin molding (RTM, VARTM, RFI)
 - Metal Bonding

References

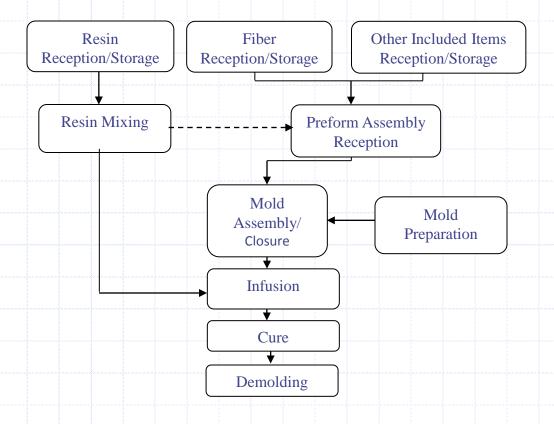
- DOT/FAA/AR-02/110, Guidelines for the Development of Process Specifications, Instructions, and Controls for the Fabrication of Fiber-Reinforced Polymer Composites
 - DOT/FAA/AR-06/25, Preliminary Guidelines and Recommendations for the Development of Material and Process Specifications for Carbon Fiber-Reinforced Liquid Resin Molded Materials
- DOT/FAA/AR-03/19, Material Qualification and Equivalency for Polymer Matrix Composite Material Systems: Updated Procedure
- CMH-17 Composite Materials Handbook, Rev G
- L. Gintert, J. Bayldon "Guidelines for the Development of Process Specifications, Instructions, and Controls for the Fabrication of Fiber-Reinforced Polymer Composites by Liquid Molding", briefing materials from September 2003

M&P Discussion Focus

Liquid Resin Molding

- Resin Transfer Molding (RTM)
- Vacuum Assisted RTM (VARTM)

Unique Material Forms


- Specialty 2-D/3-D woven and braided preform materials
- Metal Bond

September 14-16, 2010

M&P Control Topics

- Documentation
- Personnel training
 - Facilities and equipment
- Tooling
- As-received materials
 - Virgin material properties
 - Shelf life, storage
- Materials processing
 - Shop environment (temperature, humidity, cleanliness)
 - Processing parameters (cutting, shaping, temperature, pressure, time)

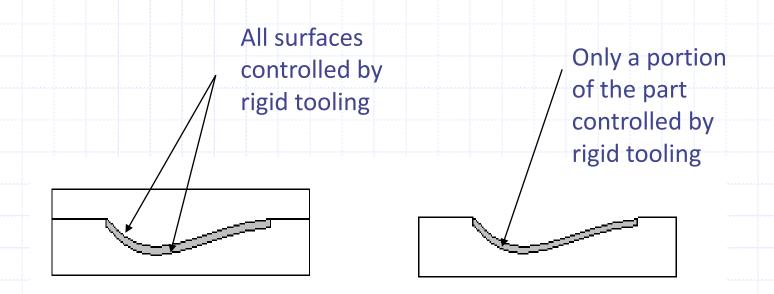
LRM Process Flow

September 14-16, 2010

Safety Awareness Workshop

Documentation and Training

- Personnel training is critical
 Experience, mentorship, qualification, accountability
- Documentation is key
 - Variability control
 - Verification of critical steps and process parameters
 - Traceability of materials and heat history


Facilities and Equipment

- Type/Model of Equipment may affect processing – understand parameters
- Equipment Calibration
 - Ovens
 - Liquid resin delivery devices (such as pumps)
 - Thermocouples
 - Vacuum gages, heat sources (e.g., hot-air guns)

Tooling

- Part surface definition
 - Engineering Performance:
 - Assembly procedure, infusion parameters/pressures, cure temperature and packing pressure, surface finish, geometry tolerances
 - Injection and vacuum ports
 - Thermocouples at coldest and hottest locations
 - Preform location/orientation features
 - Tooling preparation/cleaning controls
 - Tooling repair
 - Aids and templates

Open Mold vs. Closed Mold

Closed-cavity Mold (RTM)

Open-cavity Mold (VARTM)

September 14-16, 2010

Safety Awareness Workshop

Tooling Control Considerations

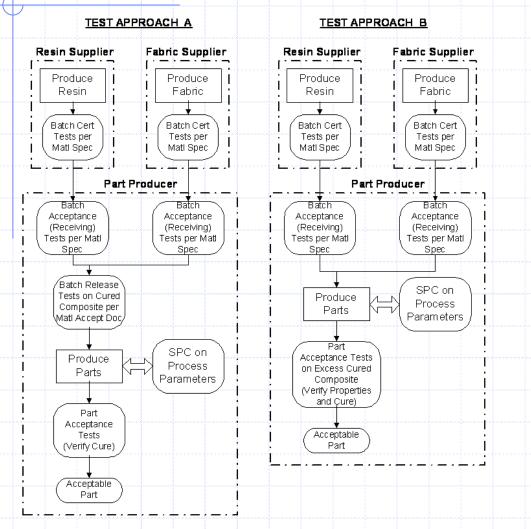
•	Method of cleaning, solvents, cleaning cloths
•	Mold release agents
•	Tool heat survey results (location of coldest and hottest thermocouples)
•	Scribe marking
•	Template inspection intervals
	Template surface conditions
•	Template material
•	Templates, number of
•	Tool heat-up rate
•	Tool surface conditions
•	Tool, method of moving, transportation
	Tooling condition (mold release applied, and no mold release)
•	Tooling configuration (flat, vertical)
•	Tooling status identified (approved, unapproved)
	Tooling storage conditions and locations
•	Tooling, expansion and contraction rate
•	Tooling material
•	Location and number of vacuum ports
	Orientation rosette
•	Tool repair procedures
•	Tool inspection intervals
•	Tool (molding cavity) vacuum leak rate (must be measured at temperature)
<u> </u>	

September 14-16, 2010

Safety Awareness Workshop

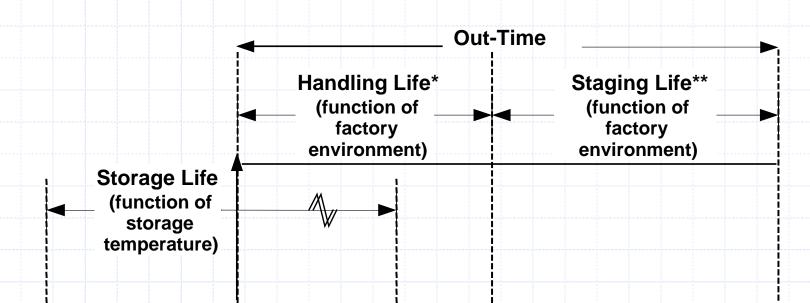
Materials Control

Traceability


 From raw fiber, or basic raw materials

 Storage Requirements

 Humidity
 Temperature


 Records

LRM Materials Batch Testing

* Batch testing of combined fiber and resin are completed at the Part Producer for LRM (differs from prepreg materials where it is done at the material supplier)

Material Storage and Out-Time Life Relationship

Date of	Out of	End of	Material Laid-		
Manufacture	Storage	Storage	up on a Tool	Resin	
(Impregnation)		Life	or Mold	Infusion	

*a.k.a. application, assembly, or work life

**a.k.a. mechanical or tool life

September 14-16, 2010

Preform Parameters

- Fiber pedigree
- Ply dimensions, alignment and stacking sequence
- Shaped preform contours
- De-bulked preform fiber volume
- Fiber sizing level and type
- Quantity of tackifiers and/or binders used, and heat history during processing
- Compatibility of constituent materials with each other

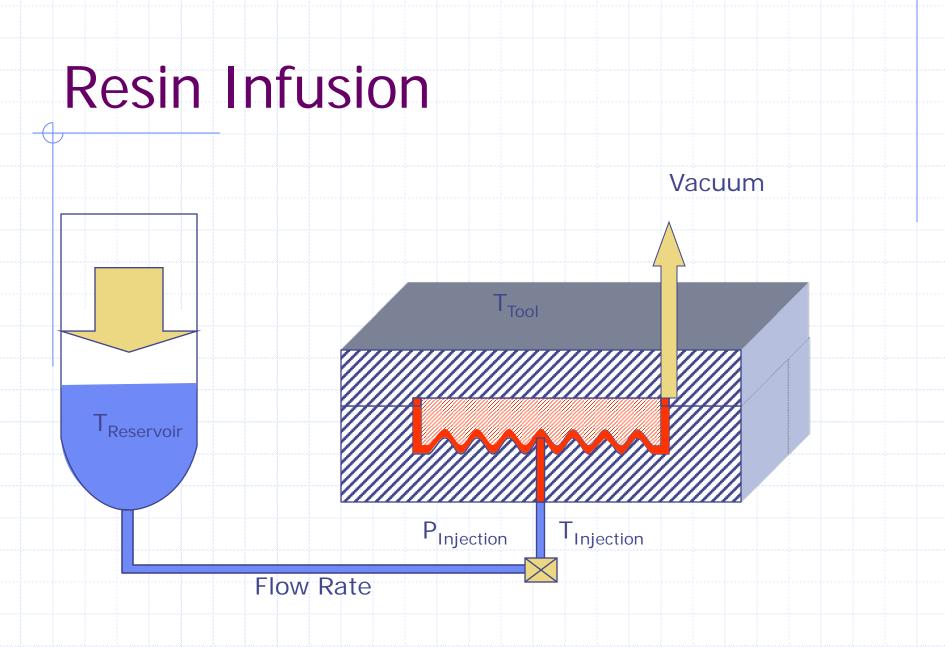
Preform Fabrication

- Frozen reactive materials warmed to room temperature prior to opening
- Materials should be cut on surfaces specifically dedicated to cutting
- Individual materials should be identified and marked at the time of cutting
- Preform tooling
 - Inspection step with a translucent shaped caul
- Accurately align the materials with respect to the tool zero-degree reference direction

Preform Assembly

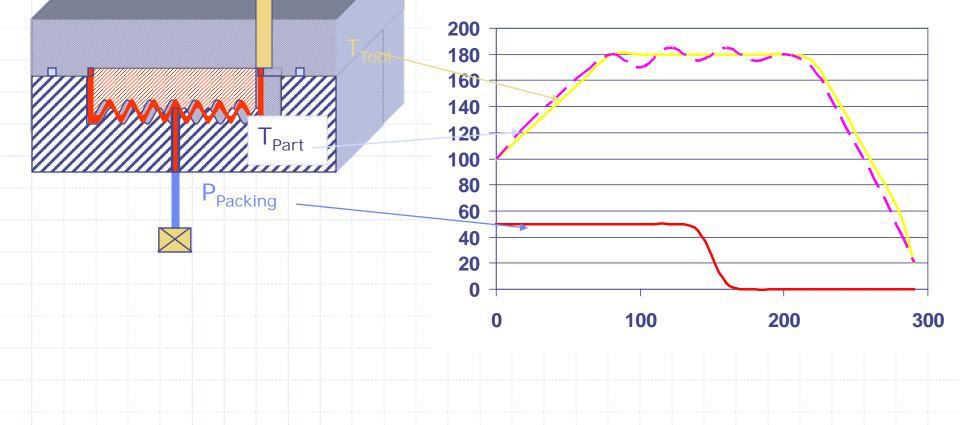
Mold assembly repeatability

- Positive location features and methods that ensure that the preform is not distorted or damaged
- Inspection features with acceptable limits for measured gaps (RTM)
- Thickness gages and templates (VARTM)
- Thermocouples
 - Direct measurement of processing temperature
 - Thermocouples placed against the preform to ensure the material is heated to the specified temperatures
 - At least two thermocouples per part recommended


Preform Room Considerations

Limit	access	by of	ther ea	uipment	(gas	powere	ed for	ck lif	ts)
Linn	access	0,0	inci eg	upmon	(Sub	power	<i>a</i> 101		(13)

- Limit access by non-lay-up personnel
- Air flow through the room
- Equipment for monitoring environmental control
- No Contamination by other processes (chemical processing, painting, and sanding)
- Treatments and cleanliness of floors
- Humidity (minimum and maximum)
- Temperature (minimum and maximum)
- Isolation from other contaminates
- Lay-up area status (approved, unapproved)
- Lighting (lumens)
- Particulate count
- Pressure (positive)
- Proximity to molding area
- Hose status (approved, unapproved)
- Treatment and cleanliness of walls
- Use of rubber gloves by personnel handling fabric or resin is recommended for the safety of the employee and to prevent possible contamination of the materials


Liquid Resin Attributes

Initial mix viscosity (at a defined temperature)
 Initial mix heat of reaction (△H_{ult})
 Mix chemistry (e.g. ratio of epoxide:amine groups in some epoxy chemistries)
 Amount of entrained air or solvent
 Thermal conductivity

Resin Cure

Vent Condition (Open, Closed, Vacuum, Pressurized)

2-D/3-D Weaving/Braiding

- Fiber pedigree for multiple fiber types
- Weave tow count/orientation/configuration
- Shaped weave (airfoil/polar)
- Processing parameters (tension/feed)
- Take-up process
- Start/end of run and trim considerations
- Stitching and pinning considerations

Metal Bond Materials Control

Metal-to-metal and metal-to-composite Material control of substrate faying surfaces Cleaning/corrosion (oxidation) control Coatings control (thickness and cure) Adhesive material controls Chemistry, mix ratio, mix quality, time/temperature

Metal Bond Process Control

- Metal surface contamination
- Adhesive mixing (certified operation)
- Film adhesive processing
 - Chemistry/time/temperature history
 - Ply count, geometry, location (backing film removed?)

Other Metal Bond Considerations

- Global thermal processing compatibility (CTE mismatch)
- Fluid/moisture ingress/corrosion control
- Repair and maintenance

September 14-16, 2010

September 14-16, 2010

Safety Awareness Workshop