Composite Structure Engineering Safety Awareness Course

"Real Life" Data Analysis and Problems

Steve Ward, SWComposites

"Real Life" Data Analysis and Problems

AGENDA

- Data problems
- Data on more batches
- Material specification limits
- Data does not meet specification limits
- Reduced testing
- Re-qualification

- When the data appears perfect, be very suspicious
- Look at the actual test specimens
 - Failure modes, layup, machining
 - Separate data by failure modes
- Report must include all measured data
 - Width, thickness, load, load-strain curves, etc
- DO NOT accept data files with stress/modulus values only
 - Data files must contain the calculations (formulas) using measured data

- High variation (CoV)
 - If due to high scatter with no batch variation, look at specimen preparation and test methods
 - If have batch variation, review material and panel fabrication process
 - When setting spec limits
 - Reduce the CoV to avoid low requirements and lack of control
 - Test additional batches and reset spec limits
 - Allowables
 - Test additional specimens and/or batches

- Batch variability
 - Fiber / prepreg variations
 - Resin content, areal weight variations
 - Review batch cert data, panel thickneses
 - Panel cure variations
 - Testing variations
 - Not likely but could occur if different labs, operators, machines used for different batches
 - Don't blindly believe the "statistics"!
 - Plot the data

- Batch variability
 - Qualification data
 - Compare supplier to purchaser test data
 - Reject qualification batches
 - Test more batches
 - Do not set low spec limits to cover variability
 - Allowables data
 - Need minimum of 5 batches for ANOVA basis values (per CMH-17)
 - Test more batches, or
 - Reject the material qualification for lack of control

- Outliers
 - Use STAT17 analysis to detect
 - Compare values to expected results
 - Check failure modes carefully
 - Discard only for an assignable cause
 - Known testing error or deviation
 - Known error or deviation in the material that would be rejected by the applicable process spec
 - Clearly separate failure mode but this requires that allowables be developed for each mode
 - Otherwise low values are hard to exclude
 - High outliers can be excluded if value is clearly outside of the expected range
 - Modulus values sometimes, rare for strength values

"Real Life" Data Analysis and Problems

AGENDA

- Data problems
- Data on more batches
- Material specification limits
- Data does not meet specification limits
- Reduced testing
- Re-qualification

When is Data on More Batches Needed?

- Suspected batch to batch variability
- Qual batch material process or raw materials are not representative of production material
- Anomalous failure modes
- Cure problems (porosity, Tg variation, etc)
- Too many batches failing material batch certification/acceptance tests
- Need higher design allowables
 - But there is no guarantee!

"Real Life" Data Analysis and Problems

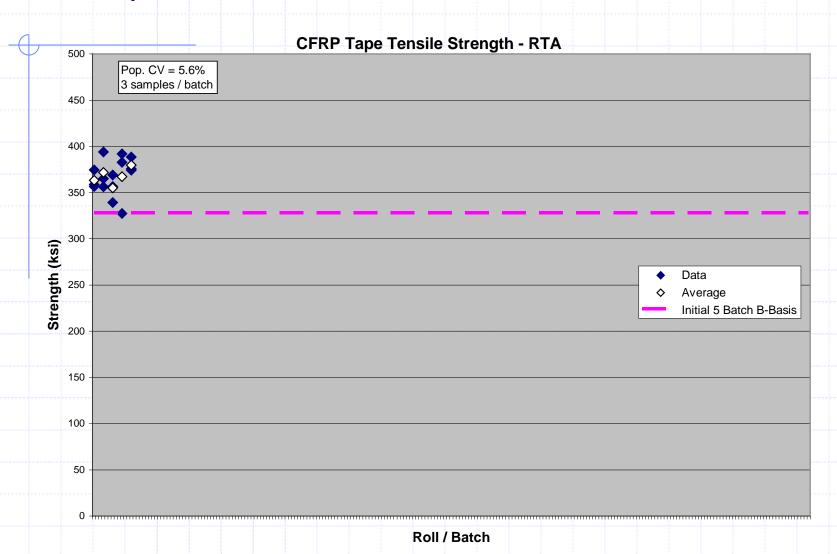
AGENDA

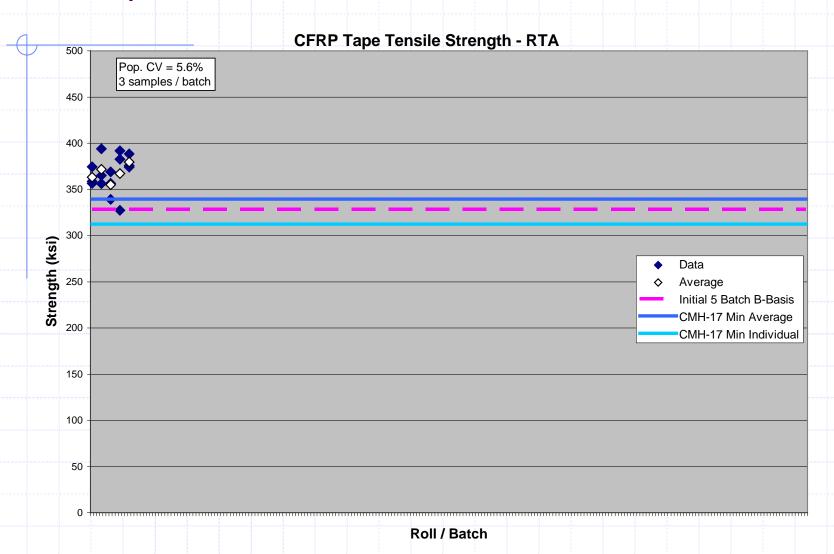
- Data problems
- Data on more batches
- Material specification limits
- Data does not meet specification limits
- Reduced testing
- Re-qualification

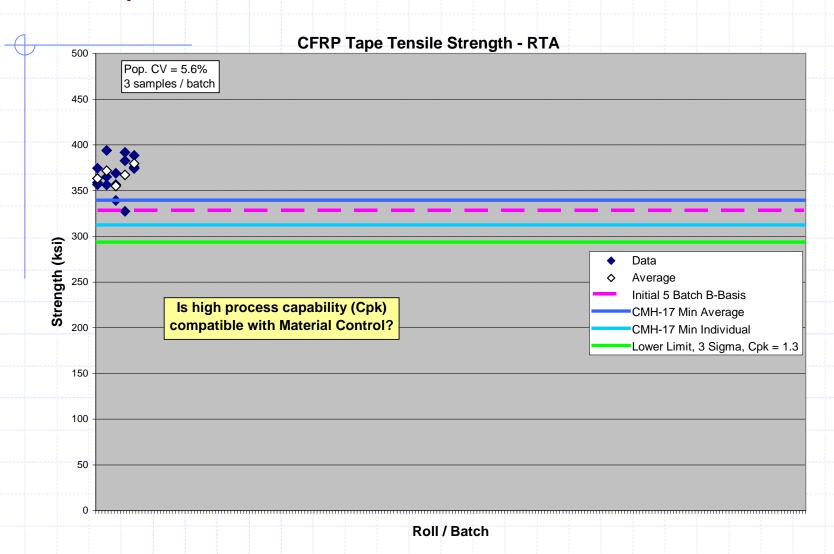
- Intended to "control" material and catch "bad" batches
- Not intended to "allow all material to pass"
- High CoV's reduce CoV in calculations
- Low CoV's increase (carefully) CoV to avoid excessive rejections
 - See CMH-17 guidelines
- Reset specification limits for batch tests after:
 - a) ~ 10 batches, b) ~ 30 batches, c) Re-Qual

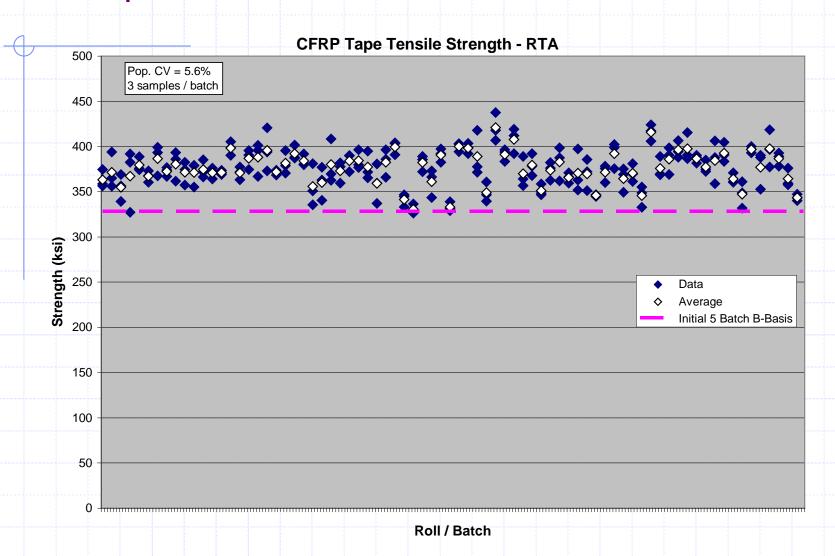
- Cured ply thickness, resin content, areal weight, Tg, etc
 - Max and min average values
- Volatile content, void content, etc
 - Max average values
- Modulus
 - Max and min average values
- Strength
 - Lower limits on average and individual
 - Should have upper limits (see previous presentation)
 - Use SPC controls on batch test data in lieu of hard upper spec limit

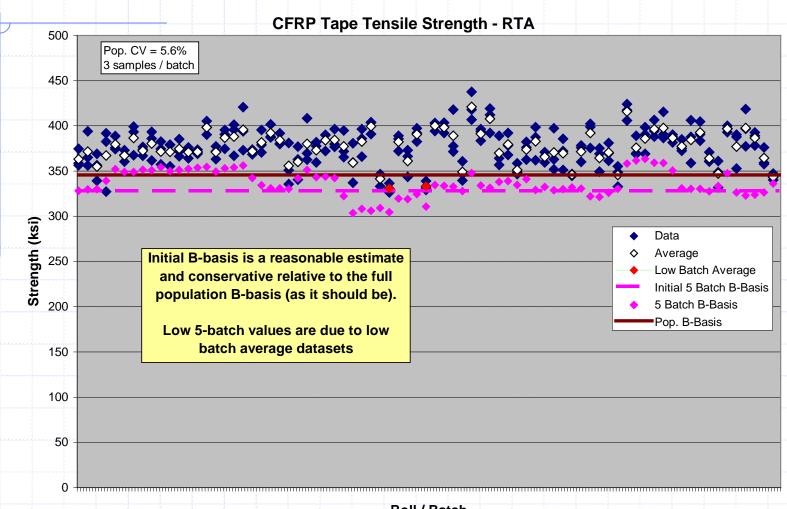
- ◆ Use CMH-17, Volume 1, Chapter 8 equations
 - For strength properties:

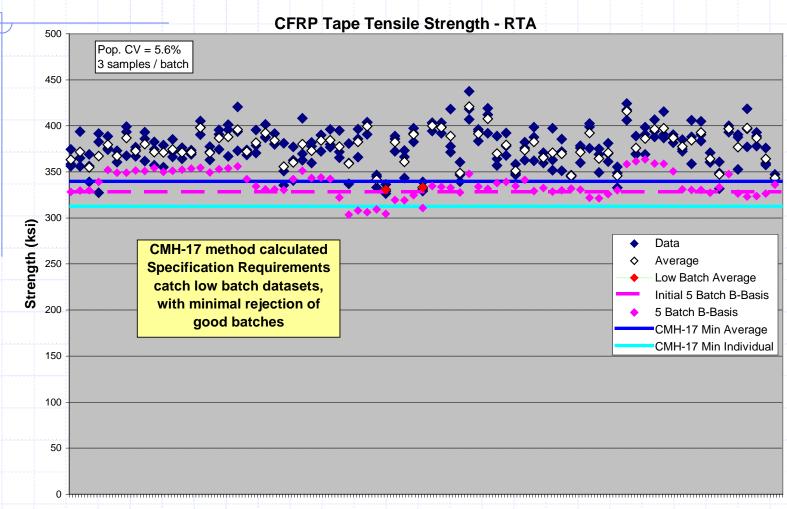

$$MinAverage = \overline{x} - k_n^{Mean}S$$

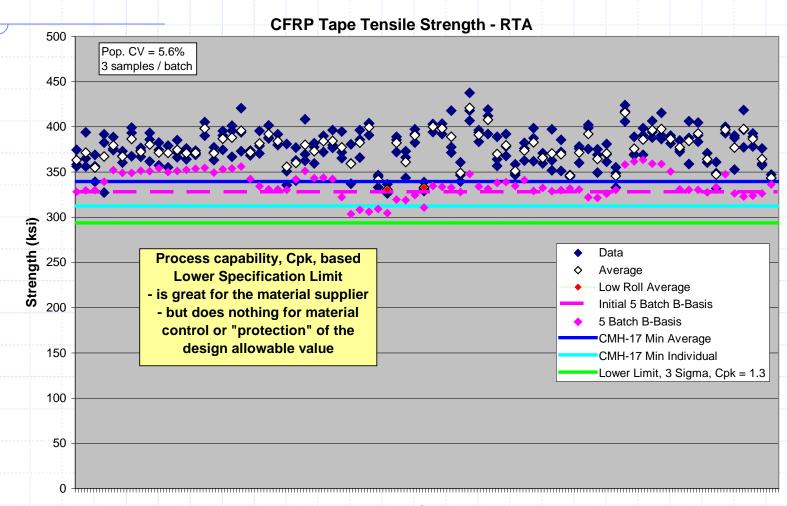

$$MinIndividual = \overline{x} - k_n^{Indv}S$$


- Where k_n is a function of:
 - Number of test replicates in roll/batch sample
 - Probability of rejecting "good" material, α
 - For specification limits use $\alpha = 0.01$ with provision for retests


- The following slides illustrate
 - Using actual tension data for a typical CFRP prepreg material
 - Relationship between specification limits and basis values
 - Sample versus population basis values
 - Specification limits set using CMH-17 equations versus process capability Cpk


$$C_{pk} = \frac{\overline{X} - LSL}{3\sigma}$$





"Real Life" Data Analysis and Problems

AGENDA

- Data problems
- Data on more batches
- Material specification limits
- Data does not meet specification limits
- Reduced testing
- Re-qualification

Specification Limit Not Met

- Case of batch certification or acceptance test value not meeting specification limit
- Examine specimen
 - Failure mode, specimen quality, layup/cure process
 - Testing problem
 - Misalignment, grip slippage/damage
- Avoid by
 - Using robust, well documented test methods
 - Not testing at inappropriate (e.g., wet) conditions

Specification Limit Not Met

- Retest more specimens
 - Only for low/high average value
 - Typically 2X number of original replicates
 - Add data to original set
 - Do not discard original data except for assignable cause unrelated to material
- Test other rolls within the same batch
- Conduct testing "round-robin" program between supplier and purchaser

"Real Life" Data Analysis and Problems

AGENDA

- Data problems
- Data on more batches
- Material specification limits
- Data does not meet specification limits
- Reduced testing
- Re-qualification

Purchaser Skip Lot Reduced Testing

- Depends on application and certifying agency
- Some general guidelines
 - 3+ years full material production
 - 3+ years full part production and purchaser testing
 - Material under SPC control for all production parameters and tested properties
 - No batch certification/acceptance failures
 - No part fabrication issues related to material
 - Supplier and purchaser test results equivalent

Source Acceptance - No Purchaser Testing

- See guidelines on previous slide for Purchaser Skip Lot Testing
- May not be appropriate for primary structure applications
- See also AC 21-26

Supplier Skip Lot Reduced Testing

- See guidelines on previous slide for Purchaser Skip Lot Testing
- May only be appropriate for certain tertiary / secondary structure applications
- Requires use of SPC to monitor:
 - Prepregging process (KPPs)
 - Material properties (KCs)
- Some tests may be skipped if correlation can be shown to other tests
- Generally not appropriate to skip all tests for a batch
- Sampling plans for rolls within a batch/lot are often used

"Real Life" Data Analysis and Problems

AGENDA

- Data problems
- Data on more batches
- Material specification limits
- Data does not meet specification limits
- Reduced testing
- Re-qualification

Re-Qualification

- CMH-17 Rev G Volume 1 Chapter 2 guidance is not appropriate for primary structure material
- Material change levels per DOT/FAA/AR-02/109

0	No effect on material	No notification of end users or FAA is required
1	Minor change evaluated at supplier	Current end users are notified, but approval by end user and FAA not required
2	Partial equivalency test program	Notify current end users and obtain FAA approval
3	Full equivalency test program	Full equivalency testing and FAA approval
4	Full qualification test program	New product specification

Re-Qualification

- Level 0 (Minor Change)
 - Change in ingredient name, company name, correction of typos
- Level 1 (Minor Change)
 - Change in release paper, changes to packaging materials
 - Alt vendor for chemically and physically identical raw materials
- Level 2 (Major Change)
 - Change in resin ingredient supplier, change in resin ingredient precursor, modifications of process equipment, addition of new similar equipment.
 - New source for chemically and physically similar raw materials

Re-Qualification

- Level 3 (Major Change)
 - Change in fiber manufacturing process, fiber size or finish
 - Change in resin chemistry, viscosity of resin components
 - Change in resin mixing, filming and prepregging equipment, change in resin or fiber manufacturing site.
 - Change in cure cycle
- Level 4 (Major Change)
 - Change in fiber type, areal weight, tow count, manufacturer
 - Change in fabric weave
 - Change in resin formulation, large change in resin content

Questions? September 14-16, 2010 Safety Awareness Workshop