

NASA Perspective on Certification by Analysis

Martin S. Annett Structural Dynamics Branch NASA Langley Research Center Hampton, VA

Use of Dynamic Analysis Methods for Aircraft Seat Certification Wichita, KS 7 August 2012

Outline

- Introduction
- Vertical Impulsive Testing and Analysis of ATD's
- Multi-Dimensional Calibration of Full-Scale Crash Test Article
- Remarks

Vertical Impulsive Testing of Hybrid II and III ATDs

- Three standard configurations
 - Hybrid III Straight Spine (Aero)
 - Hybrid III Curved Spine (Auto)
 - Hybrid II Straight Spine
- Two loading conditions
 - High Magnitude, short duration
 - Low Magnitude, High duration
- 2 Finite Element Models
 - LSTC
 - FTSS

Examined

- FTSS vs. LSTC Model
- Test vs. Model
- Test Configurations

- Lumbar loads show results for both pass and fail on FAR 27.562
- Pelvis accelerations show considerable scatter
- Calibration of Hybrid III ATD FEM performed to improve response
 - Mesh refinement
 - Components switched form rigid to deformable
 - Foam constitutive model
 - Load transfer from pelvis to torso
 - Preloading of ATD on seat

Vertical Impulsive Testing of THOR/NT ATD

- THOR-NT developed by NHTSA
- All existing THOR's currently scheduled to be upgraded to the THOR-K version
 - (16) drop tests performed with the 50th percentile THOR-NT ATD in the 14-ftVertical Drop Tower in Building 1262 at LaRC

Purpose of the tests

- Validate THOR finite element models currently in development
- Compare results to similarly conducted tests previously completed with Hybrid II and III ATDs
- Add additional data to the growing test database for THOR development.
- JSC and LaRC are interested in evaluating many of these recently developed ATDs under spacecraft and aircraft landing loads.

Vertical Impulsive Testing of THOR/NT ATD

Chair Pulses representative of FAR, DOD, and NASA Orion Requirements

z K y

Vertical Impulsive Testing of THOR/NT ATD

LS-DYNA keyword deck by LS-PreP Time = 0

Initial Correlation Efforts:

- Analysis performed by Virginia Tech (THOR-NT FEM v. 2011)
- Evaluate sensitivity of kinematics, accelerations, and force results in the FEM prior to correlation to test results

Vertical Impulsive Testing, Comparision of Hybrid II, Hybrid III, and THOR/NT Filtered Acceleration (Head Z) Filtered Acceleration (Pelvis Z) 12 Thor test 1 Thor test 1 Thor test 5 Thor test 5 16 10 Hybrid 2 test 15 Hybrid 2 test 15 Hybrid 3 test 10 Straight Spine Hybrid 3 test 10 Straight Spine 14 Hybrid 3 test 20 Curved Spine 8 Hybrid 3 test 20 Curved Spine 12 6

Crashworthiness

Fundamental Aeronautics- Rotary Wing

NASA

- To evaluate the performance of an external Deployable Energy Absorber (DEA) under realistic crash test conditions
- To generate test data to validate a system-integrated LS-DYNA FEM that includes accurate physical representations of all critical components
- To establish methodologies for FEM development, calibration, and validation that will ultimately lead to crash certification by analysis

MD-500 Crash Test with DEA

Test Parameters		Nominal Conditions	MD-500 with DEA	
Vehicle Weight (lb)		2,900	2,940	
Linear	Forward	40.	38.8	
Velocity (ft/sec)	Vertical	26.	25.6	
	Lateral	0	0.5	
A 4 4 1 4 1 4 1	Pitch	0	-5.7	
	Roll	0	7.0	
(deg)	Yaw	0	9.3	
Angular	Pitch Rate	0	0.4	
Velocity	Roll Rate	0	1.1	
(deg/sec)	Yaw Rate	0	4.8	

Test with DEA

Crashworthiness

Fundamental Aeronautics- Rotary Wing

NASA

Baseline LS-DYNA FEM

Comparison-Crash Test with DEA

Acceptable Test/Analysis Correlation for Airframe Response

0.2

MD-500 Crash Test without DEA

Test Parameters		Nominal Conditions	MD-500 Without DEA	
Vehicle W	/eight (lb)	2,900	2,906	
Line on Mala sites	Forward	40.	39.1	
(ft/sec)	Vertical	26.	24.1	
	Lateral	0	0.6	
	Pitch	0	-6.2	
Attitude (deg)	Roll	0	1.9	
	Yaw	0	2.1	
Angular	Pitch Rate	0	0.5	
Velocity (deg/sec)	Roll Rate	0	0.7	
	Yaw Rate	0	1.7	

Comparison-Crash Test without DEA

Prior to Impact

Peak Acceleration

Pilot Region Vertical Acceleration

Passenger Floor Vertical Acceleration

Inconsistencies in Acceleration Time Histories

Comparison-Crash Test without DEA

Pilot Subfloor Deformation

Inconsistencies in Deformation Patterns

- FEM deficiencies became apparent when severe loads and highly nonlinear responses were introduced for the test without the DEA
- A comprehensive and systematic calibration was conducted
 - Is modification of existing parameters sufficient?
 - Is more physical detail required in the model?
- Process implemented is divided into several steps:
 - 1. Metric definition
 - 2. Selection of candidate parameter set
 - 3. Definition of parameter uncertainty model
 - 4. Estimation of variance-based sensitivity
 - 5. Model parameter calibration

Multi-dimensional Calibration FEM

Calibration Metrics

Metric 1: Let $Q(t, p) = ||v||_2$ be the 2-norm of a response vector v and let $\overline{\sigma} = \max_{\forall p} Q(t, p)$ and $\underline{\sigma} = \min_{\forall p} Q(t, p)$. The probability to reconcile test with analysis given N model realizations is bounded by:

$$M_1 = Prob(\underline{\sigma} \le Q_e(t) \lor Q_e(t) \ge \sigma) << 1/N$$

Calibration Metric 1: Uncertainty Bounds

yield stress (psi)

Cycle					
0.	Parameter Description	Nominal	Upper Bound	Lower Bound	
l	belly thickness (in)	0.09	0.12	0.08	
2	keel beam thickness (in)	0.04	0.07	0.03	
3	seat box thickness (in)	0.1	0.12	0.08	
1	seat box bulkhead thickness (in)	0.05	0.07	0.03	

40,000

45,000 35,000

Calibrati

Variance Based Global Sensitivity Analysis

- Analysis of variance (ANOVA) is used for parameter sensitivity
- LS-DYNA simulations limited compared to number of solutions required
- Response surface surrogates (ERBF) are used to estimate additional solutions

Calibration Metric 1: Uncertainty Bounds

Final Calibration Cycle: Keel Beam & Seat Pan Thicknesses Increased

No.	Parameter Description	Nominal	Upper Bound	Lower Bound
1	belly thickness (in)	0.09	0.12	0.08
2	keel beam thickness (in)	0.12	0.15	0.10
3	seat box thickness (in)	0.1	0.12	0.08
4	seat box bulkhead thickness (in)	0.05	0.07	0.03
5	yield stress (psi)	40,000	45,000	35,000

Crashworthiness

Fundamental Aeronautics- Rotary Wing

NASA

Calibration Metric 2: Impact Shapes

Final Calibrated FEM

NASA

Calibrated FEM-Crash Test without DEA

	Parameter		Upper	Lower	
No.	Description	Nominal	Bound	Bound	Calibrated
1	belly thickness (in)	0.09	0.12	0.08	0.089
	keel beam thickness				
2	(in)	0.12	0.15	0.10	0.12
	seat box thickness				
3	(in)	0.1	0.12	0.08	0.11
	seat box bulkhead				
4	thickness (in)	0.05	0.07	0.03	0.065
5	Yield Stress (psi)	40,000	45,000	35,000	35,210

Calibrated FEM-Crash Test with DEA

	Parameter		Upper	Lower	
No.	Description	Nominal	Bound	Bound	Calibrated
1	belly thickness (in)	0.09	0.12	0.08	0.089
	keel beam thickness				
2	(in)	0.12	0.15	0.10	0.12
	seat box thickness				
3	(in)	0.1	0.12	0.08	0.11
	seat box bulkhead				
4	thickness (in)	0.05	0.07	0.03	0.065
5	Yield Stress (psi)	40,000	45,000	35,000	35,210

Conclusions

- Multiple parameters required to calibrate ATD response, mostly relegated to pelvic/lumbar region
- For crash test of full-scale airframe, multi-dimensional model calibration was performed based on two new calibration metrics:
 - (1) 2-norm acceleration and velocity bound metric (Time variation)
 - (2) Orthogonality of test and analysis impact shapes (Spatial variation)
- Response surfaces generated from a subset of DYNA simulations for variance analyses
- Calibration cycles identified critical parameters and provided effective guidance to improve model responses for both tests, with and without DEA

Remarks

- Important considerations when conducting severe crash tests for the purpose of validating analytical models
 - Sensor suite must cover all critical components, and should be located to avoid high-frequency saturation of the acceleration output.
 - Accelerometers should be chosen to ensure their velocity integration is accurate (limit drift)
 - Multiple validation metrics should be applied between test and analysis which comprehensively identify modeling deficiencies, evaluate parameter importance, and propose required model changes.
 - Building block approach to model calibration breaks up the problem into more manageable subsystems

The objective of crash certification by analysis achievable using similar methodologies